
“Cannabis has been used for medicinal purpose for thousands of years; however the positive and negative effects of cannabis use in Parkinson’s disease (PD) and Multiple Sclerosis (MS) are mostly unknown. Our aim was to assess cannabis use in PD and MS and compare results of self-reported assessments of neurological disability between current cannabis users and non-users.
Current users reported high efficacy of cannabis, 6.4 (SD 1.8) on a scale from 0 to 7 and 59% reported reducing prescription medication since beginning cannabis use. Current cannabis users were younger and less likely to be classified as obese. Cannabis users reported lower levels of disability, specifically in domains of mood, memory, and fatigue.
Cannabis may have positive impacts on mood, memory, fatigue, and obesity status in people with PD and MS. Further studies using clinically and longitudinally assessed measurements of these domains are needed to establish if these associations are causal and determine the long-term benefits and consequences of cannabis use in people with PD and MS.”
https://www.ncbi.nlm.nih.gov/pubmed/28735833
http://www.sciencedirect.com/science/article/pii/S0965229917302340
“Selective CB2 agonists represent an attractive therapeutic strategy for the treatment of a variety of diseases without psychiatric side effects mediated by the CB1 receptor.
We carried out a rational optimization of a black market designer drug SDB-001 that led to the identification of potent and selective CB2 agonists. A 7-methoxy or 7-methylthio substitution at the 3-amidoalkylindoles resulted in potent CB2 antagonists (27 or 28, IC50 = 16-28 nM). Replacement of the amidoalkyls from 3-position to the 2-position of the indole ring dramatically increased the agonist selectivity on the CB2 over CB1 receptor. Particularly, compound 57 displayed a potent agonist activity on the CB2 receptor (EC50 = 114-142 nM) without observable agonist or antagonist activity on the CB1 receptor.
Furthermore, 57 significantly alleviated the clinical symptoms and protected the murine central nervous system from immune damage in an experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis.”
“Delta-9-tetrahydrocannabinol (THC)/
“The complexity of the endocannabinoid (eCB) system is becoming better understood and new drivers of eCB signaling are emerging. Modulation of the activities of the eCB system can be therapeutic in a number of diseases.
Research into the eCB system has been paralleled by the development of agents that interact with