Got Munchies? Estimating the Relationship between Marijuana Use and Body Mass Index.

Image result for J Ment Health Policy Econ

“Although marijuana use is commonly associated with increased appetite and the likelihood of weight gain, research findings in this area are mixed.

Most studies, however, report cross-sectional associations and rarely control for such important predictors as physical activity, socioeconomic status, and alcohol and other drug use.

Results show that daily female marijuana users have a BMI that is approximately 3.1% (p<0.01) lower than that of non-users, whereas daily male users have a BMI that is approximately 2.7% (p<0.01) lower than that of non-users.

 

The present study indicates a negative association between marijuana use and BMI.

Uncovering a negative association between marijuana use and weight status is a valuable contribution to the literature, as this result contradicts those from some previous studies, which were unable to address time-invariant unobserved heterogeneity.”

http://www.ncbi.nlm.nih.gov/pubmed/27572145

“Daily Marijuana Use Linked to Lower BMI”           http://www.livescience.com/56068-daily-marijuana-use-linked-to-lower-bmi.html

“Marijuana Makes You Skinny? New Study Says Pot May Lead To Lower Body Mass Index” http://www.ibtimes.com/marijuana-makes-you-skinny-new-study-says-pot-may-lead-lower-body-mass-index-2414737

“Smoking marijuana can lower your BMI, study finds”  https://www.rawstory.com/2016/09/smoking-marijuana-can-lower-your-bmi-study-finds/

Maternal Marijuana Use and Adverse Neonatal Outcomes: A Systematic Review and Meta-analysis.

Image result for Obstet Gynecol.

“To estimate whether marijuana use in pregnancy increases risks for adverse neonatal outcomes and clarify if any increased risk is attributable to marijuana use itself or to confounding factors such as tobacco use.

CONCLUSION:

Maternal marijuana use during pregnancy is not an independent risk factor for adverse neonatal outcomes after adjusting for confounding factors.

Thus, the association between maternal marijuana use and adverse outcomes appears attributable to concomitant tobacco use and other confounding factors.”

http://www.ncbi.nlm.nih.gov/pubmed/27607879

“Using Pot While Pregnant Not Tied to Birth Risks. Smoking marijuana during pregnancy doesn’t appear to increase the risk of preterm birth or other harmful birth outcomes, a new review study suggests.” http://www.livescience.com/56036-marijuana-pregnant-preterm-birth-risk.html

“Marijuana Is Safe During pregnancy, Experts Do Not Encourage. Marijuana does not increase pregnancy risk according to new research. It does not have a negative outcome when it comes to premature birth and low birth weight. Still, experts do not encourage marijuana use during pregnancy.” http://www.scienceworldreport.com/articles/47194/20160910/marijuana-safe-during-pregnancy-experts-encourage.htm

A new antipsychotic mechanism of action for cannabidiol

Totally dope! – A new antipsychotic mechanism of action for cannabidiol, by Anand Gururajan

“The pharmacological strategy for the treatment of schizophrenia has not changed in the six decades since chlorpromazine was introduced in 1952. Although several newer agents have recently gained approval, the mechanism of action of antipsychotics is still largely based on normalising dopaminergic neurotransmission which does not adequately address the symptomatology of a very complex disorder. Moreover, they cause side effects such as extrapyramidal motor symptoms and metabolic syndrome which can worsen the patient condition.

In this regard, preclinical and clinical studies since the ’90s have demonstrated the antipsychotic potential of cannabidiol (CBD), a derivative of the cannabis sativa plant which does not have the adverse psychoactive properties of tetrahydrocannabinol.

In particular, CBD has been shown to be effective in attenuating the positive symptoms of schizophrenia with a negligible side-effect profile.

Accumulating evidence implicates dysfunction of the mammalian target of rapamycin (mTOR) signaling cascade in the pathophysiology of schizophrenia. Thus, in a recent paper, Renard et al. (2016) used the amphetamine (AMPH)-sensitisation protocol in rats to investigate whether the antipsychotic effects of CBD were mediated by its effects on the mTOR cascade. Specifically, they focused on the nucleus accumbens shell (NASh) which has been implicated as a therapeutically relevant ‘hot-spot’ for antipsychotic action and is one of the brain regions targeted by CBD.

Thus, together with the fact that CBD alone had no behavioural effects, the behavioural findings reinforce the potential utility of this cannabinoid as an antipsychotic for the treatment of the positive symptoms of schizophrenia.”

http://medicalxpress.com/news/2016-08-antipsychotic-mechanism-action-cannabidiol.html

Study: Non-Psychoactive Cannabis Could Treat OCD

Leaf Science

“A non-psychoactive chemical in marijuana may be able to control symptoms of obsessive-compulsive disorder, according to new research out of Brazil.

Cannabidiol (CBD) is one of the major compounds found in marijuana, but lacks the high caused by THC.

Previous studies suggest that it can be used to combat anxiety and other obsessive-compulsive behaviors.

While research has mostly involved simple animal models, a team led by Dr. Francisco Guimarães of the University of Sao Paulo’s School of Medicine decided to test cannabidiol in rats that were given mCPP – a drug that blocks the effects of traditional OCD treatments.

Interestingly, even at low doses, CBD was able to reverse the obsessive-compulsive behavior caused by mCPP. Published in the journal Fundamental & Clinical Pharmacology, the authors conclude that the study adds support to “a possible anti-compulsive effect of CBD.””

http://www.leafscience.com/2013/10/22/study-non-psychoactive-cannabis-treat-ocd/

“Cannabidiol reverses the mCPP-induced increase in marble-burying behavior.”  http://www.ncbi.nlm.nih.gov/pubmed/24118015

Cannabinoid Receptor Found to Help Suppress Habitual Behavior

“A mouse study finds that CB1 protein in orbitofrontal cortex neurons mediates the ability to switch between habitual and active-learning behaviors when needed.

Everyone carries out daily habits and routines. As David Lovinger, Ph.D., chief of the Laboratory for Integrative Neuroscience at the National Institute on Alcohol Abuse and Alcoholism (NIAAA), explained, “If your brain does not habitualize familiar tasks or places, it would be very difficult to focus because you’re constantly processing all these sensory inputs.”

Nonetheless, it’s important that the brain can shift from habit mode to a more active, goal-directed mindset. While an occasional lapse is normal, a chronic inability to exit from habitual behavior is a critical element of both addiction and obsessive-compulsive disorders. A new study carried out by Lovinger and colleagues adds to the understanding of the brain circuits responsible for the habitual/goal-directed shift.

The results, published June 15 in Neuron, also point to a receptor called cannabinoid type 1 (CB1) as a key regulator of this circuitry.

The findings were made possible using a training strategy that enabled mice to push levers for food in both a habitual and goal-directed manner. The mice were placed in enclosures with differing visual decorations; the lever in the first dropped a food reward after it was pressed a certain number of times, while the lever in the second would drop a reward at a random time after the lever had been pressed once.

“In the first scenario, the mouse makes the connection quickly that pressing the lever 20 times, for example, gets it a reward,” Lovinger told Psychiatric News. “In the second enclosure, that contiguity is disrupted. The mouse knows that pressing will eventually lead to reward, but it doesn’t know how many, so it will just start pressing at a periodic rate.”

On alternate testing days, the mice were allowed to eat their treats prior to the testing, and on these days—termed the devalued state because the desire for the reward is lessened—mice pressed the lever far less in the goal-directed enclosure, but still roughly the same amount in the random-time enclosure—much like a habit.

The researchers then tried these tests out on mice in which the neurons that travel between the orbitofrontal cortex (OFC) and dorsal striatum (DS, which links decision making and reward behaviors) were blocked and observed that the mice kept pressing a lot in both enclosures, suggesting an inability to switch out of habit mode.

“Normally, on devalued days the urge to default to the habit of pressing the lever repeatedly gets suppressed in some way because the brain is providing information that the food isn’t as valuable,” Lovinger said.

With the OFC-DS connection identified, the next question was what part of these neurons was responsible for suppressing habits? Some previous work by Lovinger’s colleague and study coauthor Rui Costa, Ph.D., an investigator at the Champalimaud Institute for the Unknown in Lisbon, Portugal, pointed to CB1 as a potential candidate; the CB1 receptor interacts with endocannabinoids, natural messenger molecules in the body that are strikingly similar to THC, the active compound in marijuana.

When mice lacking the CB1 receptor in their OFC neurons were trained, they reduced their lever pressing in both enclosures on devalued days, reflective of a state in which the mice always used goal-directed behaviors because they could not form habits.

Having found CB1 as the receptor that Helps suppress habits, Lovinger said the next step would be to find the agent in the OFC-DS neural circuit that strengthens habits—and that should provide major clues about how drugs of abuse like alcohol and marijuana disrupt the normal process of habituation.

While the NIAAA is more focused on the addiction side, Lovinger thinks the current knowledge gained on weakened habits could be valuable in neuropsychiatry as well.

“It may be a bit of a stretch, but ADHD could be mediated in part by reduced habit-forming potential,” he said. “If someone is trying to pay attention to all potential outcomes in every decision, it could explain the lack of focus displayed by people with ADHD.””

http://psychnews.psychiatryonline.org/doi/full/10.1176/appi.pn.2016.7b25

Cannabis Targets Receptors in the Amygdala Linked to Anxiety

“Marijuana may hijack cannabinoid receptors in the amygdala to reduce anxiety.”

“An international group of researchers led by Vanderbilt University has discovered for the first time that there are cannabinoid receptors in the amygdala. The amygdala is one of the primary brain regions involved in regulating anxiety and the flight-or-fight response.

“The discovery may help explain why marijuana users say they take the drug mainly to reduce anxiety” said Sachin Patel, M.D., Ph.D., the paper’s senior author and professor of Psychiatry and of Molecular Physiology and Biophysics at Vanderbilt. He said, “this could be highly important for understanding how cannabis exerts its behavioral effects.”

The study titled, “Multiple Mechanistically Distinct Modes of Endocannabinoid Mobilization at Central Amygdala Glutamatergic Synapses” is published in the March 2014 issue of the journal Neuron.”

https://www.psychologytoday.com/blog/the-athletes-way/201403/cannabis-targets-receptors-in-the-amygdala-linked-anxiety

New Study Finds Marijuana To Be Effective Against Depression, Migraine and Anxiety

“Research has suggested that cannabis may be a promising treatment option for a number of different physical and mental health conditions, from post-traumatic stress disorder to chronic pain. A study released this week suggests that depression , anxiety and migraine can be added to that list.

Neuroscientists from the University of Buffalo’s Research Institute on Addictions found that endocannabinoids — chemical compounds in the brain that activate the same receptors as THC, an active compound in marijuana — may be helpful in treating depression, anxiety and migraine that results from chronic stress.

In studies on rats, the researchers found that chronic stress reduced the production of endocannabinoids, which affect our cognition, emotion and behavior, and have been linked to reduced feelings of pain and anxiety, increases in appetite and overall feelings of well-being. The body naturally produces these compounds, which are similar to the chemicals in cannabis. Reduction of endocannabinoid production may be one reason that chronic stress is a major risk factor in the development of depression.

Then, the research team administered marijuana cannabinoids to the rats, finding it to be an effective way to restore endocannabinoid levels in their brains — possibly, thereby, alleviating some symptoms of depression.

“Using compounds derived from cannabis — marijuana — to restore normal endocannabinoid function could potentially help stabilize moods and ease depression,” lead researcher Dr. Samir Haj-Dahmane said in a university press release.

Recent research around marijuana’s effect on symptoms of post-traumatic stress disorder further bolsters the Buffalo neuroscientists’ findings, since both disorders involve the way the brain responds to stress. A study published last year in the journal Neuropsychopharmacology, for instance, found synthetic cannabinoids triggered changes in brain centers associated with traumatic memories in rats, preventing some of the behavioral and physiological symptoms of PTSD. Another study published last year found that patients who smoked cannabis experienced a 75 percent reduction in PTSD symptoms.

However, it’s important to note that the relationship between marijuana and depression  is complex. Some research has suggested that regular and heavy marijuana smokers are at a higher risk for depression, although a causal link between cannabis use and depression has not been established. More studies are needed in order to determine whether, and how, marijuana might be used in a clinical context for patients with depression.”  http://painphysicianjournal.co/2016/06/30/new-study-finds-marijuana-to-be-effective-against-depression-migraine-and-anxiety/

http://painphysicianjournal.co/2016/06/30/new-study-finds-marijuana-to-be-effective-against-depression-migraine-and-anxiety/

New Study Finds Endocannabinoids May Help OCD

OCD and cannabis research

“Obsessive-Compulsive Disorder (OCD) may look different in each affected individual. One person might feel it is necessary to wash their hands constantly while others might feel obligated to count something over and over.

According to the National Institute of Mental Health, OCD is a common disorder in which a person has uncontrollable and reoccurring obsessions and compulsions. Obsessions often cause anxiety in a person, so they feel by doing compulsions, or certain behaviors, they might relieve their anxiety.

There are many treatments and medications used to combat OCD, however research is now showing that endocannabinoids can also play a huge role in OCD. The new study was funded by the The National Institute of Alcohol Abuse and Alcoholism (NIAA) and was conducted with mice. Researchers probed the brain mechanisms that are used when a mouse transitions from goal-directed behavior to habitual behaviors. They then led the mouse to receive food two ways. One way the mice received food was through doing a goal-directed behavior while the second way was through doing a habitual behavior. They then found that by deleting a certain endocannabinoid receptor, mice didn’t form habits.

This discovery led scientists to the conclusion that endocannabinoids, which are natural messengers in our bodies similar to cannabinoids found in cannabis, have a lot to do with how our brains make decisions.

George F. Koob, Ph.D. is the Director of the NIAA stated that their study revealed a mechanism in the brain that controls the transition between goal-directed behaviors and habitual behaviors. He went on to explain, “As we learn more about this mechanism, it could reveal how the brain forms habits and, more specifically, how both endocannabinoids and cannabinoid abuse can influence habitual behavior pathophysiology.”

This conclusion that our bodies natural endocannabinoids and the active ingredients in cannabis can affect memory and decision-making may give scientists a glimpse into new medications and treatments for OCD.” http://ireadculture.com/new-study-finds-endocannabinoids-may-help-ocd/

http://ireadculture.com/new-study-finds-endocannabinoids-may-help-ocd/?utm_content=buffera908b&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer

Benefits of Cannabis Terpenes: Ocimene, Terpinolene, and Guaiol

Leafly

“Terpenes are a group of fragrant essential oils – secreted alongside cannabinoids like THC and CBD – that contribute to the complex aroma of cannabis. They are also generally responsible for many of the distinguishing characteristics of different strains, and this discovery has led to a sharp increase in interest among researchers, producers, and consumers alike.

Though cannabis contains up to 200 different terpenes, there are about 10 primary terpenes and 20 secondary terpenes that occur in significant concentrations. We’d like to introduce you to the potential health benefits of three of those terpenes: ocimene, terpinolene, and guaiol.

Ocimene is an isomeric hydrocarbon found in a wide variety of fruits and plants. It is recognized by its sweet, fragrant, herbaceous, and woodsy aromas, which feature prominently in several perfumes, and which help plants defend themselves in their natural environment. Ocimene occurs naturally in botanicals as diverse as mint, parsley, pepper, basil, mangoes, orchids, kumquats, and of course cannabis.

Ocimene’s potential medical benefits include:

  • Antiviral
  • Antifungal
  • Antiseptic
  • Decongestant
  • Antibacterial

Cannabis strains that can test high in ocimene include Golden Goat, Strawberry Cough,Chernobyl, and Space Queen. At Tilray, strains currently displaying high concentrations of ocimene include OG Kush, Elwyn, and Lemon Sour Diesel.

Terpinolene is another isomeric hydrocarbon, characterized by a fresh, piney, floral, herbal, and occasionally citrusy aroma and flavor. It is found in a variety of other pleasantly fragrant plants including nutmeg, tea tree, conifers, apples, cumin, and lilacs, and is sometimes used in soaps, perfumes, and lotions.

Terpinolene’s potential medical benefits include:

  • Anticancer
  • Antioxidant
  • Sedative
  • Antibacterial
  • Antifungal

Terpinolene is found most commonly in sativa-dominant strains; a few that frequently exhibit high concentrations of this terpene include Jack Herer and its derivatives, such as Pineapple Jack, J1, and Super Jack. At Tilray, strains currently possessing higher than average concentrations of terpinolene include Lemon Sour Diesel, Afghani, and Jean Guy.

Guaiol is not an oil but a sesquiterpenoid alcohol, and is also found in cypress pine and guaiacum. It has been used for centuries as a treatment for diverse ailments ranging from coughs to constipation to arthritis. It is also an effective insect repellent and insecticide.

Guaiol’s potential medical properties include:

  • Antimicrobial
  • Anti-inflammatory

Strains that can test high in guaiol include Chocolope, Liberty Haze, and Blue Kush. At Tilray, strains currently exhibiting relatively high concentrations of guaiol include Barbara Bud, Jean

https://www.leafly.com/news/cannabis-101/benefits-of-cannabis-terpenes-ocimene-terpinolene-and-guaiol

Researcher explores effects of cannabinoids on blood pressure

Andrei Derbenev, associate professor of physiology, Tulane School of Medicine

“Hypertension — or high blood pressure — is a long-term, high-risk condition for millions of people worldwide.

At the moment, synthetic beta-blockers are one of the most common drugs prescribed to treat hypertension.

But what if a natural drug, marijuana, which has been known for 5,000 years, could be used in the treatment of high blood pressure?

Andrei Derbenev, associate professor of physiology in the Tulane University School of Medicine, recently received a four-year, $1.5 million research grant from the National Institutes of Health to study how cannabinoids — the compounds of cannabis (another name for marijuana) — affect a brain stem area involved in blood pressure control.

His research may have important clinical applications for the treatment of hypertension.

He is identifying the cells in the sympathetic nervous system linked to the kidneys, a key organ in hypertension. (The sympathetic nervous system is the part of the autonomic nervous system that stimulates the body’s “fight or flight” response. Overactivity of the sympathetic nervous system is a cause of high blood pressure.)

He and his research team are studying the effect of exogenous cannabinoids — from the marijuana plant — and endogenous cannabinoids —those naturally produced within the body.

Cannabis “has lots of different chemicals inside. Some of them are painkillers. Some of them, we don’t know what they are doing.”

People ask Derbenev all the time: Is marijuana good? Is it bad? But the debate, he says, should be, instead, “Which works? Which does not work?”

About a decade ago, Derbenev led a study about the effect of cannabinoids on the parasympathetic nervous system, the part of the autonomic nervous system that stimulates the body to “rest and digest.” In that investigation, his team showed the mechanism by which cannabis can reduce digestive spasms and thus decrease vomiting. It’s a finding of great interest to cancer patients experiencing nausea while undergoing chemotherapy.”

https://news.tulane.edu/news/researcher-explores-effects-cannabinoids-blood-pressure