Activation of cannabinoid receptor type 2 attenuates surgery-induced cognitive impairment in mice through anti-inflammatory activity.

“Neuroinflammation plays a major role in postoperative cognitive dysfunction (POCD). Accumulated evidence indicates that cannabinoid receptor type 2 (CB2R) can mediate anti-inflammatory and immunomodulatory effects in part by controlling microglial activity. These findings indicate that CB2R may modulate the neuroinflammatory and cognitive impairment in a mouse model of orthopedic surgery, and the activation of CB2R may effectively ameliorate the hippocampal-dependent memory loss of mice in the early postoperative stage.” https://www.ncbi.nlm.nih.gov/pubmed/28724382 https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-017-0913-7]]>

Delta-9-tetrahydrocannabinol decreases masticatory muscle sensitization in female rats through peripheral cannabinoid receptor activation.

“This study investigated whether intramuscular injection of delta-9-tetrahydrocannabinol (THC), by acting on peripheral cannabinoid (CB) receptors, could decrease nerve growth factor (NGF)-induced sensitization in female rat masseter muscle; a model which mimics the symptoms of myofascial temporomandibular disorders.

It was found that CB1 and CB2 receptors are expressed by trigeminal ganglion neurons that innervate the masseter muscle and also on their peripheral endings.

These results suggest that reduced inhibitory input from the peripheral cannabinoid system may contribute to NGF-induced local myofascial sensitization of mechanoreceptors. Peripheral application of THC may counter this effect by activating the CB1 receptors on masseter muscle mechanoreceptors to provide analgesic relief without central side effects.

SIGNIFICANCE:

Our results suggest THC could reduce masticatory muscle pain through activating peripheral CB1 receptors. Peripheral application of cannabinoids could be a novel approach to provide analgesic relief without central side effects.” https://www.ncbi.nlm.nih.gov/pubmed/28722246 http://onlinelibrary.wiley.com/doi/10.1002/ejp.1085/abstract]]>

Amyloid proteotoxicity initiates an inflammatory response blocked by cannabinoids.

“The beta amyloid (Aβ) and other aggregating proteins in the brain increase with age and are frequently found within neurons. The mechanistic relationship between intracellular amyloid, aging and neurodegeneration is not, however, well understood. We use a proteotoxicity model based upon the inducible expression of Aβ in a human central nervous system nerve cell line to characterize a distinct form of nerve cell death caused by intracellular Aβ. It is shown that intracellular Aβ initiates a toxic inflammatory response leading to the cell’s demise. Aβ induces the expression of multiple proinflammatory genes and an increase in both arachidonic acid and eicosanoids, including prostaglandins that are neuroprotective and leukotrienes that potentiate death. Cannabinoids such as tetrahydrocannabinol stimulate the removal of intraneuronal Aβ, block the inflammatory response, and are protective. Altogether these data show that there is a complex and likely autocatalytic inflammatory response within nerve cells caused by the accumulation of intracellular Aβ, and that this early form of proteotoxicity can be blocked by the activation of cannabinoid receptors.”
]]>