Activation of CB2 receptor system restores cognitive capacity and hippocampal Sox2 expression in a transgenic mouse model of Alzheimer's disease.

“Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by neuroinflammation, extensive deposits of amyloid-β aggregates, and loss of memory and cognitive abilities. The brains of patients with AD show increased expression of cannabinoid receptor type 2 (CB2) receptors and glial markers. CB2 receptors act as a negative feedback regulator; when activated by a CB2agonist, they can help limit the extent of the neuroinflammatory response and the subsequent development of neuronal damage in the central nervous system. In a double transgenic APP/PS1 mice model of AD, we evaluated the effect of MDA7, a CB2 agonist, on several neuropathological conditions of AD including amyloid deposition, inflammatory reaction, Sox2 (sex-determining region Y-box 2) expression, and spatial memory. Activation of microglia CB2 receptors by MDA7 suppressed neuroinflammation, demonstrated by decreased immunosignal of Iba1 in the hippocampal CA1 and dentate gyrus (DG) areas, promoted clearance of amyloid plaques in the DG area, restored Sox2 expression, and promoted recovery of the neuronal synaptic plasticity in hippocampal CA1. In addition, treatment with MDA7 improved the behavioral performance in the Morris water maze in APP/PS1mice. Collectively, these findings suggest that MDA7 has a potential therapeutic effect in the setting of AD.” https://www.ncbi.nlm.nih.gov/pubmed/28551012 http://www.sciencedirect.com/science/article/pii/S0014299917303758]]>

Activation of CB2 receptor system restores cognitive capacity and hippocampal Sox2 expression in a transgenic mouse model of Alzheimer’s disease.

Cover image

“Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by neuroinflammation, extensive deposits of amyloid-β aggregates, and loss of memory and cognitive abilities. The brains of patients with AD show increased expression of cannabinoid receptor type 2 (CB2) receptors and glial markers. CB2 receptors act as a negative feedback regulator; when activated by a CB2agonist, they can help limit the extent of the neuroinflammatory response and the subsequent development of neuronal damage in the central nervous system. In a double transgenic APP/PS1 mice model of AD, we evaluated the effect of MDA7, a CB2 agonist, on several neuropathological conditions of AD including amyloid deposition, inflammatory reaction, Sox2 (sex-determining region Y-box 2) expression, and spatial memory. Activation of microglia CB2 receptors by MDA7 suppressed neuroinflammation, demonstrated by decreased immunosignal of Iba1 in the hippocampal CA1 and dentate gyrus (DG) areas, promoted clearance of amyloid plaques in the DG area, restored Sox2 expression, and promoted recovery of the neuronal synaptic plasticity in hippocampal CA1. In addition, treatment with MDA7 improved the behavioral performance in the Morris water maze in APP/PS1mice. Collectively, these findings suggest that MDA7 has a potential therapeutic effect in the setting of AD.”

https://www.ncbi.nlm.nih.gov/pubmed/28551012

http://www.sciencedirect.com/science/article/pii/S0014299917303758

Endocannabinoids modulate apoptosis in endometriosis and adenomyosis.

“Adenomyosis that is a form of endometriosis is the growth of ectopic endometrial tissue within the muscular wall of the uterus (myometrium), which may cause dysmenorrhea and infertility. Endocannabinoid mediated apoptotic mechanisms of endometriosis and adenomyosis are not known. We hypothesized that the down regulation of endocannabinoid receptors and/or alteration in their regulatory enzymes may have a direct role in the pathogenesis of endometriosis and adenomyosis through apoptosis. Endocannabinoid receptors CB1 and CB2, their synthesizing and catabolizing enzymes (FAAH, NAPE-PLD, DAGL, MAGL) and the apoptotic indexes were immunohistochemically assessed in endometriotic and adenomyotic tissues. Findings were compared to normal endometrium and myometrium. Endometrial adenocarcinoma (Ishikawa) and ovarian endometriosis cyst wall stromal (CRL-7566) cell lines were furthermore cultured with or without cannabinoid receptor agonists. The IC50 value for CB1 and CB2 receptor agonists was quantified. Cannabinoid agonists on cell death were investigated by Annexin-V/Propidium iodide labeling with flow cytometry. CB1 and CB2 receptor levels decreased in endometriotic and adenomyotic tissues compared to the control group (p=0,001 and p=0,001). FAAH, NAPE-PLD, MAGL and DAGL enzyme levels decreased in endometriotic and adenomyotic tissues compared to control (p=0,001, p=0,001, p=0,001 and p=0,002 respectively). Apoptotic cell indexes both in endometriotic and adenomyotic tissues also decreased significantly, compared to the control group (p=0,001 and p=0,001). CB1 and CB2 receptor agonist mediated dose dependent fast anti-proliferative and pro-apoptotic effects were detected in Ishikawa and ovarian endometriosis cyst wall stromal cell lines (CRL-7566). Endocannabinoids are suggested to increase apoptosis mechanisms in endometriosis and adenomyosis. CB1 and CB2 antagonists can be considered as potential medical therapeutic agents for endometriosis and adenomyosis.” https://www.ncbi.nlm.nih.gov/pubmed/28549792 http://www.sciencedirect.com/science/article/pii/S0065128116303154]]>

Activation of cannabinoid receptor type II by AM1241 protects adipose-derived mesenchymal stem cells from oxidative damage and enhances their therapeutic efficacy in myocardial infarction mice via Stat3 activation.

Related image “The poor survival of cells in ischemic sites diminishes the therapeutic efficacy of stem cell therapy. Previously we and others have reported that Cannabinoid receptor type II (CB2) is protective during heart ischemic injury for its anti-oxidative activity. However, whether CB2 activation could improve the survival and therapeutic efficacy of stem cells in ischemic myocardium and the underlying mechanisms remain elusive. Here, we showed evidence that CB2 agonist AM1241 treatment could improve the functional survival of adipose-derived mesenchymal stem cells (AD-MSCs) in vitro as well as in vivo. Moreover, AD-MSCs adjuvant with AM1241 improved cardiac function, and inhibited cardiac oxidative stress, apoptosis and fibrosis. To unveil possible mechanisms, AD-MSCs were exposed to hydrogen peroxide/serum deprivation to simulate the ischemic environmentin myocardium. Results delineated that AM1241 blocked the apoptosis, oxidative damage and promoted the paracrine effects of AD-MSCs. Mechanistically, AM1241 activated signal transducers and activators of transcription 3 (Stat3) through the phosphorylation of Akt and ERK1/2. Moreover, the administration of AM630, LY294002, U0126 and AG490 (inhibitors for CB2, Akt, ERK1/2 and Stat3, respectively) could abolish the beneficial actions of AM1241. Our result support the promise of CB2 activation as an effective strategy to optimize stem cell-based therapy possibly through Stat3 activation.”
]]>