Evaluation of Δ(9)-tetrahydrocannabinol metabolites and oxidative stress in type 2 diabetic rats.

Logo of ijbms

Cannabis has been known to be the oldest psychoactive plant for years. It is classified in the Cannabis genus, which is part of the Cannabacea family.

Cannabis sativa L. is the most common species. Δ9-tetrahydrocannabinol (THC) is the main psychoactive constituent identified in Cannabis sativa L.

THC is the most notable cannabinoid among all phytocannabinoids.

THC is exposed to degradation and converted into its active and inactive metabolites that are conjugated with glucuronic acid, and excreted in urine. THC is converted to active metabolite, 11-hydroxy-Δ9-THC (11-OH-THC), and then converted to an inactive metabolite, 11-nor-9-carboxy- Δ9-THC (THC – COOH).

ElSohly and Slade mention that C. sativa and its products have been used as medicinal agents.

Cannabinoids show a variety of therapeutic effects against chronic pain and muscle spasms, nausea and anorexia caused by HIV treatment, vomiting and nausea caused by cancer chemotherapy as well as anorexia associated with weight loss caused by immune deficiency syndrome.

Many studies report that THC provides protection against neuronal injury in a cell culture model of Parkinson disease and experimental models of Huntington disease, exhibits anti-oxidative action and mitigates the severity of the autoimmune response in an experimental model of diabetes.

The development and progression of diabetes mellitus and its complications arise out of increased oxidative damage. Kassab and Piwowar report that the best-known pathways of diabetic complications include oxidative stress.

The aims of the study presented in this paper were: (a) to explain the effects of THC on oxidative stress in T2DM treated with THC and (b) to determine the level of THC metabolites in the urine of diabetic and control rats induced by THC injection.

The object of the study is to examine the effects of Δ(9)-tetrahydrocannabinol (THC) against oxidative stress in the blood and excretion of THC metabolites in urine of type 2 diabetic rats.

These findings highlight that THC treatment may attenuate slightly the oxidative stress in diabetic rats.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818362/

Cannabinoids protect cells from oxidative cell death: a receptor-independent mechanism.

Journal of Pharmacology and Experimental Therapeutics

“Serum is required for the survival and growth of most animal cells. In serum-free medium, B lymphoblastoid cells and fibroblasts die after 2 days.

We report that submicromolar concentrations of Delta(9)-tetrahydrocannabinol (THC), Delta(8)-THC, cannabinol, or cannabidiol, but not WIN 55,212-2, prevented serum-deprived cell death. Delta(9)-THC also synergized with platelet-derived growth factor in activating resting NIH 3T3 fibroblasts.

The cannabinoids‘ growth supportive effect did not correlate with their ability to bind to known cannabinoid receptors and showed no stereoselectivity, suggesting a nonreceptor-mediated pathway.

Direct measurement of oxidative stress revealed that cannabinoids prevented serum-deprived cell death by antioxidation.

The antioxidative property of cannabinoids was confirmed by their ability to antagonize oxidative stress and consequent cell death induced by the retinoid anhydroretinol.

Therefore, cannabinoids act as antioxidants to modulate cell survival and growth of B lymphocytes and fibroblasts.”

http://www.ncbi.nlm.nih.gov/pubmed/10869379/

Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption.

Logo of nihpa

“Cannabinoids, components of the Cannabis sativa (marijuana) plant, are known to exert potent anti-inflammatory, immunomodulatory and analgesic effects through activation of cannabinoid-1 and -2 (CB1 and CB2) receptors located in the central nervous system and immune cells.

The limitation of the therapeutic utility of the major cannabinoid, Δ9-tetrahydrocannabinol, is the development of psychoactive effects through central nervous system CB1 receptor. In contrast, cannabidiol (CBD), one of the most abundant cannabinoids of Cannabis sativa with reported antioxidant, anti-inflammatory, and immunomodulatory effects is well tolerated without side effects when chronically administered to humans and is devoid of psychoactive properties due to a low affinity for the CB1 and CB2 receptors.

A nonpsychoactive cannabinoid cannabidiol (CBD) has been shown to exert potent anti-inflammatory and antioxidant effects and has recently been reported to lower the incidence of diabetes in nonobese diabetic mice and to preserve the blood-retinal barrier in experimental diabetes.

In this study we have investigated the effects of CBD on high glucose (HG)-induced, mitochondrial superoxide generation, NF-κB activation, nitrotyrosine formation, inducible nitric oxide synthase (iNOS) and adhesion molecules ICAM-1 and VCAM-1 expression, monocyte-endothelial adhesion, transendothelial migration of monocytes, and disruption of endothelial barrier function in human coronary artery endothelial cells (HCAECs).

HG markedly increased mitochondrial superoxide generation (measured by flow cytometry using MitoSOX), NF-κB activation, nitrotyrosine formation, upregulation of iNOS and adhesion molecules ICAM-1 and VCAM-1, transendothelial migration of monocytes, and monocyte-endothelial adhesion in HCAECs. HG also decreased endothelial barrier function measured by increased permeability and diminished expression of vascular endothelial cadherin in HCAECs.

Remarkably, all the above mentioned effects of HG were attenuated by CBD pretreatment.

Since a disruption of the endothelial function and integrity by HG is a crucial early event underlying the development of various diabetic complications, our results suggest that CBD, which has recently been approved for the treatment of inflammation, pain, and spasticity associated with multiple sclerosis in humans, may have significant therapeutic benefits against diabetic complications and atherosclerosis.

Collectively, our results suggest that the nonpsychoactive cannabinoid CBD have significant therapeutic benefits against diabetic complications and atherosclerosis by attenuating HG-induced mitochondrial superoxide generation, increased NF-κB activation, upregulation of iNOS and adhesion molecules, 3-NT formation, monocyte-endothelial adhesion, TEM of monocytes, and disruption of the endothelial barrier function.

This is particularly encouraging in light of the excellent safety and tolerability profile of CBD in humans.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228254/

Δ9-tetrahydrocannabinol treatment improved endothelium-dependent relaxation on streptozotocin/nicotinamide-induced diabetic rat aorta.

Publication Cover

“In this study, we investigated the possible effect of Δ(9)-tetrahydrocannabinol (THC), a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, on metabolic control and vascular complications of diabetes in streptozotocin/nicotinamide (STZ/NIC) induced type 2 diabetes mellitus.

These results suggested that THC improved endothelium-dependent relaxation in STZ/NIC induced diabetic rat aorta and that these effects were mediated at least in part, by control of hyperglycemia and enhanced endothelial nitric oxide bioavailability.”

Decreased prevalence of diabetes in marijuana users: cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) III

Logo of bmjo

“To determine the association between diabetes mellitus (DM) and marijuana use.

We hypothesised that the prevalence of DM would be reduced in marijuana users due to the presence of one or more cannabinoids because of their immunomodulatory and anti-inflammatory properties.

Our analyses of adults aged 20–59 years in the NHANES III database showed that participants who used marijuana had lower prevalence of DM and had lower odds of DM relative to non-marijuana users.

We did not find an association between the use of marijuana and other chronic diseases, such as hypertension, stroke, myocardial infarction and heart failure.

Marijuana use was independently associated with a lower prevalence of DM.

In conclusion, marijuana use was associated with a decreased prevalence of DM.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289985/

Abnormal cannabidiol attenuates experimental colitis in mice, promotes wound healing and inhibits neutrophil recruitment.

“Non-psychotropic atypical cannabinoids have therapeutic potential in a variety of inflammatory conditions including those of the gastrointestinal tract.

Here we examined the effects of the atypical cannabinoid abnormal cannabidiol (Abn-CBD) on wound healing, inflammatory cell recruitment and colitis in mice.

TNBS-induced colitis was attenuated by treatment with Abn-CBD.

Abn-CBD is protective against TNBS-induced colitis, promotes wound healing of endothelial and epithelial cells and inhibits neutrophil accumulation on HUVEC monolayers.

Thus, the atypical cannabinoid Abn-CBD represents a novel potential therapeutic in the treatment of intestinal inflammatory diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27418880

5-lipoxygenase mediates docosahexaenoyl ethanolamide and N-arachidonoyl-L-alanine-induced reactive oxygen species production and inhibition of proliferation of head and neck squamous cell carcinoma cells.

Image result for bmc cancer

“Endocannabinoids have recently drawn attention as promising anti-cancer agents. We previously observed that anandamide (AEA), one of the representative endocannabinoids, effectively inhibited the proliferation of head and neck squamous cell carcinoma (HNSCC) cell lines in a receptor-independent manner. In this study, using HNSCC cell lines, we examined the anti-cancer effects and the mechanisms of action of docosahexaenoyl ethanolamide (DHEA) and N-arachidonoyl-L-alanine (NALA), which are polyunsaturated fatty acid (PUFA)-based ethanolamides like AEA. From these findings, we suggest that ROS production induced by the 5-LO pathway mediates the anti-cancer effects of DHEA and NALA on HNSCC cells. Finally, our findings suggest the possibility of a new cancer-specific therapeutic strategy, which utilizes 5-LO activity rather than inhibiting it.”  http://www.ncbi.nlm.nih.gov/pubmed/27411387

https://bmccancer.biomedcentral.com/articles/10.1186/s12885-016-2499-3

Cannabinoids inhibit HIV-1 Gp120-mediated insults in brain microvascular endothelial cells.

Logo of nihpa

“HIV-1 infection has significant effect on the immune system as well as on the nervous system.

Breakdown of the blood-brain barrier (BBB) is frequently observed in patients with HIV-associated dementia (HAD) despite lack of productive infection of human brain microvascular endothelial cells (HBMEC).

Cellular products and viral proteins secreted by HIV-1 infected cells, such as the HIV-1 Gp120 envelope glycoprotein, play important roles in BBB impairment and HIV-associated dementia development.

HBMEC are a major component of the BBB.

Using cocultures of HBMEC and human astrocytes as a model system for human BBB as well as in vivo model, we show for the first time that cannabinoid agonists inhibited HIV-1 Gp120-induced calcium influx mediated by substance P and significantly decreased the permeability of HBMEC as well as prevented tight junction protein down-regulation of ZO-1, claudin-5, and JAM-1 in HBMEC.

Furthermore, cannabinoid agonists inhibited the transmigration of human monocytes across the BBB and blocked the BBB permeability in vivo.

These results demonstrate that cannabinoid agonists are able to restore the integrity of HBMEC and the BBB following insults by HIV-1 Gp120.

These studies may lead to better strategies for treatment modalities targeted to the BBB following HIV-1 infection of the brain based on cannabinoid pharmacotherapies.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735224/

Expression and function of cannabinoid receptors CB1 and CB2 and their cognate cannabinoid ligands in murine embryonic stem cells.

Logo of plosone

“Characterization of intrinsic and extrinsic factors regulating the self-renewal/division and differentiation of stem cells is crucial in determining embryonic stem (ES) cell fate.

ES cells differentiate into multiple hematopoietic lineages during embryoid body (EB) formation in vitro, which provides an experimental platform to define the molecular mechanisms controlling germ layer fate determination and tissue formation.

This work has not been addressed previously and yields new information on the function of cannabinoid receptors, CB1 and CB2, as components of a novel pathway regulating murine ES cell differentiation.

This study provides insights into cannabinoid system involvement in ES cell survival and hematopoietic differentiation.

Thus, these observations together with our results strongly suggest that both CB1 and CB2 activation are involved in the maintenance of mES cells and that the endocannabinoid system is essential in stem cell survival and stem cell hematopoietic differentiation.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1919431/

 

Cannabinoid Receptor-2 Regulates Embryonic Hematopoietic Stem Cell Development via Prostaglandin E2 and P-Selectin Activity

Cannabinoids (CB) modulate adult hematopoietic stem and progenitor cell (HSPCs) function, however, impact on the production, expansion, or migration of embryonic HSCs is currently uncharacterized.

Here, using chemical and genetic approaches targeting CB-signaling in zebrafish, we show that CB receptor (CNR) 2, but not CNR1, regulates embryonic HSC development.

Together, these data suggest CNR2-signaling optimizes the production, expansion, and migration of embryonic HSCs by modulating multiple downstream signaling pathways.

Our work indicates that CB/CNR2 activity acts as a modifier of embryonic HSC formation by fine-tuning signaling pathways essential for HSC emergence and colonization of secondary niches.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4781665/