“Cannabis sativa L. (C. sativa) is an annual dioecious plant, which shares its origins with the inception of the first agricultural human societies in Asia. Over the course of time different parts of the plant have been utilized for therapeutic and recreational purposes, for instance, extraction of healing oils from seed, or the use of inflorescences for their psychoactive effects. The key psychoactive constituent in C. sativa is called Δ-9-tetrahydrocannabinol (D9-THC). The endocannabinoid system seems to be phylogenetically ancient, as it was present in the most primitive vertebrates with a neuronal network. N-arachidonoylethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG) are the main endocannabinoids ligands present in the animal kingdom, and the main endocannabinoid receptors are cannabinoid type-1 (CB1) receptor and cannabinoid type-2 (CB2) receptor.
Tag Archives: cannabis
Computational systems pharmacology analysis of cannabidiol: a combination of chemogenomics-knowledgebase network analysis and integrated in silico modeling and simulation.
“With treatment benefits in both the central nervous system and the peripheral system, the medical use of cannabidiol (CBD) has gained increasing popularity.
Given that the therapeutic mechanisms of CBD are still vague, the systematic identification of its potential targets, signaling pathways, and their associations with corresponding diseases is of great interest for researchers.
In the present work, chemogenomics-knowledgebase systems pharmacology analysis was applied for systematic network studies to generate CBD-target, target-pathway, and target-disease networks by combining both the results from the in silico analysis and the reported experimental validations.
Based on the network analysis, three human neuro-related rhodopsin-like GPCRs, i.e., 5-hydroxytryptamine receptor 1 A (5HT1A), delta-type opioid receptor (OPRD) and G protein-coupled receptor 55 (GPR55), were selected for close evaluation. Integrated computational methodologies, including homology modeling, molecular docking, and molecular dynamics simulation, were used to evaluate the protein-CBD binding modes. A CBD-preferred pocket consisting of a hydrophobic cavity and backbone hinges was proposed and tested for CBD-class A GPCR binding.
Finally, the neurophysiological effects of CBD were illustrated at the molecular level, and dopamine receptor 3 (DRD3) was further predicted to be an active target for CBD.”
https://www.ncbi.nlm.nih.gov/pubmed/30202014
https://www.nature.com/articles/s41401-018-0071-1
Cellular localization and regulation of receptors and enzymes of the endocannabinoid system in intestinal and systemic inflammation.
“Surveys suggest that Cannabis provides benefit for people with inflammatory bowel disease. However, mechanisms underlying beneficial effects are not clear. We performed in situ hybridization RNAscope® combined with immunohistochemistry to show cell-specific distribution and regulation of cannabinoid receptor 1 and 2 (CB1, CB2), G protein-coupled receptor 55 (GPR55), and monoacylglycerol lipase (MGL) mRNA in immune cells using murine models of intestinal and systemic inflammation. In summary, our study reveals changes in gene expression of members of the endocannabinoid system in situ attesting particularly GPR55 and MGL a distinct cellular role in the regulation of the immune response to intestinal and systemic inflammation.” https://www.ncbi.nlm.nih.gov/pubmed/30196316 https://link.springer.com/article/10.1007%2Fs00418-018-1719-0]]>
Cannabis for the Treatment of Epilepsy: an Update.

“Glioblastoma multiforme (GBM) is the most frequent and aggressive type of brain tumor due, at least in part, to its poor response to current anticancer treatments. These features could be explained, at least partially, by the presence within the tumor mass of a small population of cells termed Glioma Initiating Cells (GICs) that has been proposed to be responsible for the relapses occurring in this disease. Thus, the development of novel therapeutic approaches (and specifically those targeting the population of GICs) is urgently needed to improve the survival of the patients suffering this devastating disease.
Previous observations by our group and others have shown that Δ9-Tetrahydrocannabinol (THC, the main active ingredient of marijuana) and other cannabinoids including
“Anti-virulence strategies are being explored as a novel approach to combat pathogens. Such strategies include inhibition of surface adhesion, tissue invasion, toxin production, and/or interference with the gene regulation of other virulence traits.
Listeria monocytogenes, the causative agent of listeriosis, is a facultative intracellular food pathogen characterized by a wide distribution in the environment. Its ability to persist within biofilms and to develop resistance to sanitizers is the cause of significant problems in food processing plants and of steep costs for the food industry.
In humans, the treatment of listeriosis is hampered by the intracellular location of listeriae and the poor intracellular penetration of some antibiotics. Eleven L. monocytogenes isolates from patients who were diagnosed with invasive listeriosis in Italy in 2014-2016 were studied.
This in vitro and in vivo study explored the antibacterial and anti-virulence properties of a steam-distilled essential oil of Cannabis sativa L., which is being intensively investigated for its high content in powerful bioactive phytochemicals.
Susceptibility experiments demonstrated a moderate bactericidal activity of the essential oil (Minimum Bactericidal Concentration > 2048 μg/mL).
Food contamination with L. monocytogenes is a major concern for the food industry, particularly for plants making ready-to-eat and processed food.
The present work provides a baseline in the study of the anti-virulence properties of the C. sativa essential oil against L. monocytogenes. Further studies are needed to understand if it could be used as an alternative agent for the control of L. monocytogenes in food processing plants.”
“Pain and symptom control challenges are common in palliative care, and the search for other therapeutic strategies is ongoing.
Unfortunately, patients and their caregivers are receiving little information or support from healthcare providers regarding the increasingly popular cannabinoid-based medicines (CBM).
Clinicians, meanwhile, feel understandably perplexed by the discrepancy between the available evidence and the rapid interest in which patients and their families have demonstrated for CBM.
There is an urgent need to address the many challenges that are delaying the appropriate integration of CBM into clinical practice, notwithstanding the obvious need for a solid general knowledge of pharmacology, mechanism of action and available clinical evidence supporting its use.
The authors will address these challenges and provide practical recommendations regarding patient assessment for the use of CBM. The authors will also make suggestions regarding patient expectations in order to define clear objectives, review the necessary precautions prior to initiating treatment, aid in selecting the appropriate strain and route of administration as well as establishing proper titration and monitoring protocols. The authors will also discuss the lesser known but potentially therapeutic psychoactive effects of cannabis.
As this class of therapeutic agents are likely to play a major role in palliative medicine in the near future, clinicians would benefit from familiarizing themselves with CBM and we can expect that patients and their caregivers will appreciate receiving support in their search for safe and effective therapeutic alternatives.”
“Schizophrenia is considered a debilitating neurodevelopmental psychiatric disorder and its pharmacotherapy remains problematic without recent major advances. The development of interventions able to prevent the emergence of schizophrenia would therefore represent an enormous progress.
Here, we investigated whether treatment with
“A simple, quick and low cost procedure was developed for the extraction of Δ9-tetrahydrocannabinol,