Vascular Dysfunction in a Transgenic Model of Alzheimer’s Disease: Effects of CB1R and CB2R Cannabinoid Agonists.

Image result for Front Neurosci.

“There is evidence of altered vascular function, including cerebrovascular, in Alzheimer’s disease (AD) and transgenic models of the disease.

Indeed vasoconstrictor responses are increased, while vasodilation is reduced in both conditions. β-Amyloid (Aβ) appears to be responsible, at least in part, of alterations in vascular function.

Cannabinoids, neuroprotective and anti-inflammatory agents, induce vasodilation both in vivo and in vitro.

We have demonstrated a beneficial effect of cannabinoids in models of AD by preventing glial activation.

In this work we have studied the effects of these compounds on vessel density in amyloid precursor protein (APP) transgenic mice, line 2576, and on altered vascular responses in aortae isolated ring.

In summary, we have confirmed and extended the existence of altered vascular responses in Tg APP mice.

Moreover, our results suggest that treatment with cannabinoids may ameliorate the vascular responses in AD-type pathology.”

β-caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties.

 

Cancer Biology & Medicine

“Natural bicyclic sesquiterpenes, β-caryophyllene (BCP) and β-caryophyllene oxide (BCPO), are present in a large number of plants worldwide.

Both BCP and BCPO (BCP(O)) possess significant anticancer activities, affecting growth and proliferation of numerous cancer cells.

In addition, both compounds potentiate the classical drug efficacy by augmenting their concentrations inside the cells.

BCP is a phytocannabinoid with strong affinity to cannabinoid receptor type 2 (CB2 ), but not cannabinoid receptor type 1 (CB1 ). In opposite, BCP oxidation derivative, BCPO, does not exhibit CB1/2 binding, thus the mechanism of its action is not related to endocannabinoid system (ECS) machinery.

It is known that BCPO alters several key pathways for cancer development, such as mitogen-activated protein kinase (MAPK), PI3K/AKT/mTOR/S6K1 and STAT3 pathways. In addition, treatment with this compound reduces the expression of procancer genes/proteins, while increases the levels of those with proapoptotic properties.

The selective activation of CB2 may be considered a novel strategy in pain treatment, devoid of psychoactive side effects associated with CB1 stimulation. Thus, BCP as selective CB2 activator may be taken into account as potential natural analgesic drug.

Moreover, due to the fact that chronic pain is often an element of cancer disease, the double activity of BCP, anticancer and analgesic, as well as its beneficial influence on the efficacy of classical chemotherapeutics, is particularly valuable in oncology.

This review is focused on anticancer and analgesic activities of BCP and BCPO, the mechanisms of their actions, and potential therapeutic utility.”

https://www.ncbi.nlm.nih.gov/pubmed/27696789

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

Anandamide Suppresses Proinflammatory T Cell Responses In Vitro through Type-1 Cannabinoid Receptor-Mediated mTOR Inhibition in Human Keratinocytes.

Image result for The Journal of Immunology

“The endocannabinoid system comprises cannabinoid receptors 1 and 2 (CB1 and CB2), their endogenous ligands, anandamide (AEA) and 2-arachidonoylglycerol, and metabolic enzymes of these ligands.

The endocannabinoid system has recently been implicated in the regulation of various pathophysiological processes of the skin that include immune competence and/or tolerance of keratinocytes, the disruption of which might promote the development of skin diseases.

Recent evidence showed that CB1 in keratinocytes limits the secretion of proinflammatory chemokines, suggesting that this receptor might also regulate T cell dependent inflammatory diseases of the skin.

In this article, we sought to investigate the cytokine profile of IFN-γ-activated keratinocytes, and found that CB1 activation by AEA suppressed production and release of signature TH1- and TH17-polarizing cytokines, IL-12 and IL-23, respectively. We also set up cocultures between a conditioned medium of treated keratinocytes and naive T cells to disclose the molecular details that regulate the activation of highly proinflammatory TH1 and TH17 cells.

AEA-treated keratinocytes showed reduced an induction of IFN-γ-producing TH1 and IL-17-producing TH17 cells, and these effects were reverted by pharmacological inhibition of CB1.

Further analyses identified mammalian target of rapamycin as a proinflammatory signaling pathway regulated by CB1, able to promote either IL-12 and IL-23 release from keratinocytes or TH1 and TH17 polarization.

Taken together, these findings demonstrate that AEA suppresses highly pathogenic T cell subsets through CB1-mediated mammalian target of rapamycin inhibition in human keratinocytes.

Thus, it can be speculated that the latter pathway might be beneficial to the physiological function of the skin, and can be targeted toward inflammation-related skin diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/27694494

Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders.

Image result for Front Neurosci.

“Endocannabinoids activate two types of specific G-protein-coupled receptors (GPCRs), namely cannabinoid CB1 and CB2. Contrary to the psychotropic actions of agonists of CB1 receptors, and serious side effects of the selective antagonists of this receptor, drugs acting on CB2 receptors appear as promising drugs to combat CNS diseases (Parkinson’s disease, Huntington’s chorea, cerebellar ataxia, amyotrohic lateral sclerosis). Differential localization of CB2 receptors in neural cell types and upregulation in neuroinflammation are keys to understand the therapeutic potential in inter alia diseases that imply progressive neurodegeneration. Medicinal chemistry approaches are now engaged to develop imaging tools to map receptors in the living human brain, to develop more efficacious agonists, and to investigate the possibility to develop allosteric modulators.”

[Progress in study on endocannabinoids and cannabinoid receptors in the treatment for neuropathic pain].

 

Image result for Zhong Nan Da Xue Xue Bao Yi Xue Ban logo

“Endocannabinoids and cannabinoid receptors are expressed in various central pain modulation regions. They maintain in dynamic changes in the expression level and distribution under different pathological and physiological conditions. These changes possess advantage as well as disadvantage. Exogenous administration of endocannabinoids exerts analgesic effect in different pain models, which is mainly mediated by the cannabinoid CB1 and CB2 receptors. Inhibition of enzymes for degrading endocannabinoids in different pain models also shows analgesic effect due to the increased local levels of endocannabinoids.”

Selective modulator of cannabinoid receptor type 2 reduces memory impairment and infarct size during cerebral hypoperfusion and vascular dementia.

Image result for Curr Neurovasc Res.

“Vascular dementia is the highly devastating neurodegenerative disorder after Alzheimer’s disease (AD) and mainly found in aged people but the effectual therapeutic target is still not there.

Chronic cerebral hypoperfusion (CCH) has been broadly found in vascular dementia (VaD) patients. CCH is thought to link with neurodegenerative disorders and their subsequent cognitive deteriorate on.

This study has been framed to examine the role of a selective agonist of cannabinoid receptor type 2(CB2); 1-phenylisatin in CCH induced VaD.

These results indicate that 2VO induced CCH in rats, which was attenuated with the treatment of 1-phenylisatin.

Hence, it may be suggested that modulation of cannabinoid receptor may provide benefits in CCH as cognitive impairment and VaD.

Therefore, selective agonists of CB2 receptors may be a potential research target for the alleviation of VaD.”

http://www.ncbi.nlm.nih.gov/pubmed/27586843

The Influence of the CB1 Receptor Ligands on the Schizophrenia-Like Effects in Mice Induced by MK-801.

Image result for neurotoxicity research

“A growing body of psychiatric research has emerged, focusing on the role of endocannabinoid system in psychiatric disorders.

For example, the endocannabinoid system, via cannabinoid CB (CB1 and CB2) receptors, is able to control the function of many receptors, such as N-methyl-D-aspartate (NMDA) receptors connected strictly with psychosis or other schizophrenia-associated symptoms.

The aim of the present research was to investigate the impact of the CB1 receptor ligands on the symptoms typical for schizophrenia.

The present findings confirm that endocannabinoid system is able to modify a variety of schizophrenia-like responses, including the cognitive disturbances and hyperlocomotion in mice.

Antipsychotic-like effects induced by CB1 receptor antagonist, obtained in our research, confirm the potential effect of CB1 receptor blockade and could have important therapeutic implications on clinical settings, in the future.”

http://www.ncbi.nlm.nih.gov/pubmed/27577742

Activation of type 1 cannabinoid receptor (CB1R) promotes neurogenesis in murine subventricular zone cell cultures.

Logo of plosone

“The endocannabinoid system has been implicated in the modulation of adult neurogenesis.

Here, we describe the effect of type 1 cannabinoid receptor (CB1R) activation on self-renewal, proliferation and neuronal differentiation in mouse neonatal subventricular zone (SVZ) stem/progenitor cell cultures.

There is an emerging consensus that endocannabinoid signaling plays a major role in adult neurogenesis.

Cannabinoids act on at least two types of receptors, the type 1 and type 2 cannabinoid receptors (CB1R and CB2R), which are, respectively, predominantly distributed in the central nervous system (CNS) and immune system, although some studies have described the presence of low levels of CB2R in the brain.

Taken together, these results demonstrate that CB1R activation induces proliferation, self-renewal and neuronal differentiation from mouse neonatal SVZ cell cultures.

 Collectively, CB1R agonists render neurons less excitable and thus promote neuroprotection.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660454/

Endocannabinoids in the gut.

“The endocannabinoid system mainly consists of endogenously produced cannabinoids (endocannabinoids) and two G protein-coupled receptors (GPCRs), cannabinoid receptors 1 and 2 (CB1 and CB2). This system also includes enzymes responsible for the synthesis and degradation of endocannabinoids and molecules required for the uptake and transport of endocannabinoids. In addition, endocannabinoid-related lipid mediators and other putative endocannabinoid receptors, such as transient receptor potential channels and other GPCRs have been identified. Accumulating evidence indicates that the endocannabinoid system is a key modulator of gastrointestinal physiology, influencing satiety, emesis, immune function, mucosal integrity, motility, secretion, and visceral sensation. In light of therapeutic benefits of herbal and synthetic cannabinoids, the vast potential of the endocannabinoid system for the treatment of gastrointestinal diseases has been demonstrated. This review focuses on the role of the endocannabinoid system in gut homeostasis and in the pathogenesis of intestinal disorders associated with intestinal motility, inflammation and cancer. Finally, links between gut microorganisms and the endocannabinoid system are briefly discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/27538961

Endocannabinoid dysregulation in cognitive and stress-related brain regions in the Nrg1 mouse model of schizophrenia.

 

“The endocannabinoid system is dysregulated in schizophrenia.

These results demonstrate for the first time in vivo interplay between Nrg1 and endocannabinoids in the brain.

Our results demonstrate that aberrant Nrg1 and endocannabinoid signalling may cooperate in the hippocampus to impair cognition in schizophrenia, and that Nrg1 deficiency alters endocannabinoid signalling in brain stress circuitry.”

http://www.ncbi.nlm.nih.gov/pubmed/27521758