The cannabinoid WIN 55,212-2 prevents neuroendocrine differentiation of LNCaP prostate cancer cells.

“Neuroendocrine (NE) differentiation represents a common feature of prostate cancer and is associated with accelerated disease progression and poor clinical outcome. Nowadays, there is no treatment for this aggressive form of prostate cancer.

The aim of this study was to determine the influence of the cannabinoid WIN 55,212-2 (WIN, a non-selective cannabinoid CB1 and CB2 receptor agonist) on the NE differentiation of prostate cancer cells.

Taken together, we demonstrate that PI3K/Akt/AMPK might be an important axis modulating NE differentiation of prostate cancer that is blocked by the cannabinoid WIN, pointing to a therapeutic potential of cannabinoids against NE prostate cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/27324222

Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinsońs disease.

“Elements of the endocannabinoid system are strongly expressed in the basal ganglia where they suffer profound rearrangements after dopamine depletion.

Modulation of the levels of the endocannabinoid 2-arachidonoyl glycerol by inhibiting monoacylglycerol lipase alters glial phenotypes and provides neuroprotection in a mouse model of Parkinsońs disease.

In this study, we assessed whether inhibiting fatty acid amide hydrolase could also provide beneficial effects on the time course of this disease.

Together, these results demonstrate an effect of fatty acid amide hydrolase inhibition on the motor symptoms of Parkinsońs disease in two distinct experimental models that is mediated by cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27318096

Cannabinoids in the Brain: New Vistas on an Old Dilemma

“The use of cannabis as a therapeutic and recreational substance goes back to thousands of years throughout Asia, Middle East, Southern Africa, and South America.

The discovery of Δ-9-tetrahydrocannabinol (Δ9-THC) by Mechoulam and Gaoni in the midsixties as the major psychoactive constituent of cannabis sativa led to another important discovery, namely, its specific binding site that was isolated and cloned in 1990. This first cannabinoid receptor was coined CB1R and triggered a number of investigations on its expression, localization, and function within the body tissue including the brain, in various species. This was followed by the discovery in 1992 of the first endocannabinoid (eCB), anandamide, followed by another cannabinoid receptor CB2R and a second endocannabinoid called 2-arachidonoylglycerol (2-AG). Later on, some of the enzymes responsible for their synthesis (N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD); diacylglycerol lipase (DAGL)) and degradation (fatty acid amide hydrolase (FAAH); monoacylglycerol lipase (MAGL)) were identified.

Studies on the expression and localization of the cannabinoid receptors in the brain have burgeoned in the last decade and have furnished valuable data on their putative involvement in various sensory-motor and cognitive functions in diverse animal species, including Man. These studies have recently received substantial attention from pharmaceutical companies as a potential source for novel treatments. Additionally, the dilemma of legalizing the use of cannabis in some countries makes the investigation on cannabinoid systems more momentous. This special issue is therefore timely and brings historical and groundbreaking novel research on the role of these cannabinoid receptors in the mammalian central nervous system (CNS).

We hope that the collected papers in this special issue will contribute to the understanding of the various mechanisms involved in the functions of the endocannabinoid system and the development of new pharmaceutical tools to treat visual disorders.”

http://www.hindawi.com/journals/np/2016/9146713/

CANNABIS CHEMICALS STOP PROSTATE CANCER GROWTH

Image result for bjc british journal of cancer

“ACTIVE chemicals in cannabis have been shown to halt prostate cancer cell growth according to research published in the British Journal of Cancer*.

Researchers from the University of Alcala, in Madrid tested the effects of the active chemicals in cannabis called cannabinoids** on three human prostate cancer cell lines – called PC-3, DU-a45 and LNCaP.

The prostate cancer cells carry molecular ‘garages’- called receptors- in which cannabinoids can ‘park’.

The scientists showed for the first time that if cannabinoids ‘park’ on a receptor called CB2, the cancer cells stop multipyling.

“This research suggest that prostate cancer cells might stop growing if they are treated with chemicals found in cannabis but more work needs to be done to explore the potential of the cannabinoids in treatment.”

To confirm the findings the scientists switched off the CB2 receptors – or ‘closed the garage doors’- on the prostate cells. When cannabinoids were then added to cells without the CB2 receptor, the prostate cancer cells carried on dividing and growing. This suggests that cannabinoids connect with the CB2 receptors on prostate cancer cells to stop cell division and spread.

Professor Ines Diaz-Laviada, study author at the University of Alcala said: “Our research shows that there are areas on prostate cancer cells which can recognise and talk to chemicals found in cannabis called cannabinoids. These chemicals can stop the division and growth of prostate cancer cells and could become a target for new research into potential drugs to treat prostate cancer.””

http://www.nature.com/bjc/press_releases/p_r_aug09_6605248.html

https://www.news-medical.net/news/20090821/Cannabis-chemicals-stop-prostate-cancer-growth.aspx

Inhibition of human tumour prostate PC-3 cell growth by cannabinoids R(+)-Methanandamide and JWH-015: Involvement of CB2

Logo of brjcancer

“We have previously shown that cannabinoids induce growth inhibition and apoptosis in prostate cancer PC-3 cells, which express high levels of cannabinoid receptor types 1 and 2 (CB1 and CB2). In this study, we investigated the role of CB2 receptor in the anti-proliferative action of cannabinoids and the signal transduction triggered by receptor ligation.

This study defines the involvement of CB2-mediated signalling in the in vivo and in vitro growth inhibition of prostate cancer cells and suggests that CB2 agonists have potential therapeutic interest and deserve to be explored in the management of prostate cancer.

Cannabinoids, the active components of Cannabis sativa and their derivatives, exert a wide spectrum of modulatory actions and pharmacological activities in the brain as well as in the periphery, and therefore, the therapeutic potential of cannabinoids has gained much attention during the past few years. One of the most exciting areas of current research in the therapeutic potential of cannabinoids is cancer.

Recent evidence suggests that cannabinoids are powerful regulators of cell growth and differentiation. They have been shown to exert anti-tumoural effects by decreasing viability, proliferation, adhesion and migration on various cancer cells, thereby suggesting the potential use of cannabinoids in the treatment of gliomas, prostate and breast cancers and malignancies of immune origin.

Overall, our data show a role for the cannabinoid receptor CB2 in the anti-tumour effect of cannabinoids on prostate cells in vitroand in vivo. There is considerable interest in the application of selective CB2 receptor agonists, which are devoid of typical marijuana-like psychoactive properties of CB1 agonists, for future cannabinoid-based anticancer therapies. Therefore, our findings point to the potential application of cannabinoid receptor type 2 ligands as anti-tumour agents in prostate cancer.”

Current Status and Prospects for Cannabidiol Preparations as New Therapeutic Agents.

“There is growing pressure for states and the federal government to legalize the use of cannabis products for medical purposes in the United States.

Sixteen states have legalized (or decriminalized possession of) products high in cannabidiol (CBD) and with restricted Δ9 -tetrahydrocannabinol (Δ9 -THC) content. In most of these states, the intent is for use in refractory epileptic seizures in children, but in a few states, the indications are broader.

The objectives of this review are to provide an overview of the pharmacology and toxicology of CBD; to summarize some of the regulatory, safety, and cultural issues relevant to the further exploitation of its antiepileptic or other pharmacologic activities; and to assess the current status and prospects for clinical development of CBD and CBD-rich preparations for medical use in the United States.

Unlike Δ9 -THC, CBD elicits its pharmacologic effects without exerting any significant intrinsic activity on the cannabinoid receptors (CB1 and CB2 ), whose activation results in the psychotropic effects characteristic of Δ9 -THC, and CBD possesses several pharmacologic activities that give it a high potential for therapeutic use.

CBD exhibits antiepileptic, anxiolytic, antipsychotic, and antiinflammatory properties.

In combination with Δ9 -THC, CBD has received regulatory approvals in several European countries and is currently under study in U.S. Food and Drug Administration-registered trials in the United States.

A number of states have passed legislation to allow for the use of CBD-rich, limited Δ9 -THC-content preparations of cannabis for certain pathologic conditions. CBD is currently being studied in several clinical trials and is at different stages of clinical development for various medical indications.

Judging from clinical findings reported so far, CBD and CBD-enriched preparations have great potential utility, but uncertainties regarding sourcing, long-term safety, abuse potential, and regulatory dilemmas remain.”

http://www.ncbi.nlm.nih.gov/pubmed/27285147

Assay of DAGLα/β Activity.

“The endocannabinoid 2-arachidonoylglycerol (2-AG) exerts its physiological action by binding to and functionally activating type-1 (CB1) and type-2 (CB2) cannabinoid receptors. It is thought to be produced through the action of sn-1 selective diacylglycerol lipase (DAGL) that catalyzes 2-AG biosynthesis from sn-2-arachidonate-containing diacylglycerols. Since 2-AG biosynthetic enzymes have been identified only recently, little information on methodological approaches for measuring DAGL activity is as yet available. Here, a highly sensitive radiometric assay to measure DAGL activity by using 1-oleoyl[1-(14)C]-2-arachidonoylglycerol as the substrate is reported. All the steps needed to perform lipid extraction, fractionation by thin-layer chromatography (TLC), and quantification of radiolabeled [(14)C]-oleic acid via scintillation counting are described in detail.”

http://www.ncbi.nlm.nih.gov/pubmed/27245901

Protocol to Study β-Arrestin Recruitment by CB1 and CB2 Cannabinoid Receptors.

“Cannabinoid CB1 and CB2 receptors are G-protein-coupled receptors (GPCRs) that recruit β-arrestins upon activation by (partial) agonists. β-Arrestin recruitment is induced by phosphorylation of their C-terminal tails, and is associated with the termination of GPCR signaling; yet, it may also activate cellular signaling pathways independent of G-proteins. Here, we describe a detailed protocol to characterize the potency and efficacy of ligands to induce or inhibit β-arrestin recruitment to the human CB1 and CB2 receptors, by using the PathHunter(®) assay. The latter is a cellular assay that can be performed in plates with 384-wells. The PathHunter(®) assay makes use of β-galactosidase complementation, and has a chemiluminescent readout. We used this assay to characterize a set of reference ligands (both agonists and antagonists) on human CB1 and CB2 receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27245896

Endocannabinoid system: a promising therapeutic target for the treatment of haematological malignancies?

“The therapeutic properties of cannabinoids are well-known since ancient years.

Growing evidence exist on endocannabinoid system (ECS) modulation related with human tumorigenesis.

Taking into account the substantial role of ECS on immune cell regulation, the present review is aimed to summarize the emerging evidence concerning cannabinoid receptor (CBR) expression and cannabinoid ligand effects on haematological malignancies.

CONCLUSIONS:

Most of cannabinoid actions, mainly CB2R-mediated against haematopoietic malignant cells, seems promising, as inhibition of cell proliferation and apoptosis and paraptosis induction have been documented.

Cannabinoid ligands appear to activate rudimentary pathways for cell survival, such as ERK, JNK, p38 MAPK, and to induce caspase synthesis, in vitro. Such data are strongly recommended to be confirmed by in vivo experiments with emphasis on cannabinoid ligands’ bioavailability and phytocannabinoid psychotropic properties.

The preliminary antitumoral ECS effects and their relative lack of important side effects render ECS a promising therapeutic target for the treatment of haematological malignancies.”

http://www.ncbi.nlm.nih.gov/pubmed/27237820

Anti-inflammatory and antioxidant effects of a combination of cannabidiol and moringin in LPS-stimulated macrophages.

“Inflammatory response plays an important role in the activation and progress of many debilitating diseases. Natural products, like cannabidiol, a constituent of Cannabis sativa, and moringin, an isothiocyanate obtained from myrosinase-mediated hydrolysis of the glucosinolate precursor glucomoringin present in Moringa oleifera seeds, are well known antioxidants also endowed with anti-inflammatory activity.

This is due to a covalent-based mechanism for ITC, while non-covalent interactions underlie the activity of CBD. Since these two mechanisms are distinct, and the molecular endpoints are potentially complementary, we investigated in a comparative way the protective effect of these compounds alone or in combination on lipopolysaccharide-stimulated murine macrophages.

Our results show that the cannabidiol (5μM) and moringin (5μM) combination outperformed the single constituents that, at this dosage had only a moderate efficacy on inflammatory (Tumor necrosis factor-α, Interleukin-10) and oxidative markers (inducible nitric oxide synthase, nuclear factor erythroid 2-related factor 2, nitrotyrosine). Significant upregulation of Bcl-2 and downregulation of Bax and cleaved caspase-3 was observed in cells treated with cannabidiol-moringin combination.

Treatment with the transient receptor potential vanilloid receptor 1 antagonist was detrimental for the efficacy of cannabidiol, while no effect was elicited by cannabinoid receptor 1 and cannabinoid receptor 2 antagonists. None of these receptors was involved in the activity of moringin.

Taken together, our in vitro results testify the anti-inflammatory, antioxidative, and anti-apoptotic effects of the combination of cannabidiol and moringin.”

http://www.ncbi.nlm.nih.gov/pubmed/27215129