Activation of cannabinoid receptors prevents antigen-induced asthma-like reaction in guinea pigs.

“In this study we evaluated the effects of the CB1/CB2 cannabinoid receptor agonist on antigen-induced asthma-like reaction in sensitized guinea pigs…

These findings suggest that targeting cannabinoid receptors could be a novel preventative therapeutic strategy in asthmatic patients.”

http://www.ncbi.nlm.nih.gov/pubmed/18266975

The endogenous cardiac cannabinoid system: a new protective mechanism against myocardial ischemia.

“The pharmacological (and recreational) effects of cannabis have been known for centuries. However, it is only recently that one has identified two subtypes of G-protein-coupled receptors, namely CB1 and CB2-receptors, which mediate the numerous effects of delta9-tetrahydrocannabinol and other cannabinoids.

Logically, the existence of cannabinoid-receptors implies that endogenous ligands for these receptors (endocannabinoids) exist and exert a physiological role. Hence, arachidonoylethanolamide (anandamide) and sn-2 arachidonoylglycerol, the first two endocannabinoids identified, are formed from plasma membrane phospholipids and act as CB1 and/or CB2 agonists.

The presence of both CB1 and CB2-receptors in the rat heart is noteworthy.

This endogenous cardiac cannabinoid system is involved in several phenomena associated with cardioprotective effects.

The reduction in infarct size following myocardial ischemia, observed in rats exposed to either LPS or heat stress 24 hours before, is abolished in the presence of a CB2-receptor antagonist.

Endocannabinoids and synthetic cannabinoids, the latter through either CB1 or CB2-receptors, exert direct cardioprotective effects in rat isolated hearts.

The ability of cannabinoids to reduce infarct size has been confirmed in vivo in anesthetized mice and rats. This latter effect appears to be mediated through CB2-receptors.

Thus, the endogenous cardiac cannabinoid system, through activation of CB2-receptors, appears to be an important mechanism of protection against myocardial ischemia.”

https://pubmed.ncbi.nlm.nih.gov/16618028

Delta-9-tetrahydrocannabinol protects cardiac cells from hypoxia via CB2 receptor activation and nitric oxide production.

“Delta-9-tetrahydrocannabinol (THC), the major active component of marijuana, has a beneficial effect on the cardiovascular system during stress conditions…

The present study was designed to investigate the central (CB1) and the peripheral (CB2)cannabinoid receptor expression in neonatal cardiomyoctes and possible function in the cardioprotection of THC from hypoxia.

The antagonist for the CB2, but not CB1 receptor antagonist abolished the protective effect of THC.

In agreement with these results using RT-PCR, it was shown that neonatal cardiac cells express CB2, but not CB1 receptors.

Involvement of NO in the signal transduction pathway activated by THC through CB2 was examined. It was found that THC induces nitric oxide (NO) production by induction of NO synthase (iNOS) via CB2 receptors.

L-NAME (NOS inhibitor, 100 microM) prevented the cardioprotection provided by THC.

Taken together, our findings suggest that THC protects cardiac cells against hypoxia via CB2 receptor activation by induction of NO production.

An NO mechanism occurs also in the classical pre-conditioning process; therefore, THC probably pre-trains the cardiomyocytes to hypoxic conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/16444588

Cannabidiol, a nonpsychoactive Cannabis constituent, protects against myocardial ischemic reperfusion injury

Heart and Circulatory Physiology

“CANNABINOIDS ARE NATURAL and synthetic compounds structurally or pharmacologically related to the constituents of the plant Cannabis sativa or to the endogenous agonists (endocannabinoids) of the cannabinoid CB1 and CB2 receptors.

Cannabidiol (CBD) is a major cannabinoid constituent of Cannabis.

In contrast to tetrahydrocannabinol, CBD binds very weakly to CB1 and CB2 receptors. Contrary to most cannabinoids, CBD does not induce psychoactive or cognitive effects.

CBD has been shown to have anti-inflammatory properties. CBD (together with tetrahydrocannabinol) has been successfully tested in a few preliminary human trials related to autoimmune diseases…

Cannabidiol (CBD) is a major, nonpsychoactive Cannabis constituent with anti-inflammatory activity mediated by enhancing adenosine signaling.

Inasmuch as adenosine receptors are promising pharmaceutical targets for ischemic heart diseases, we tested the effect of CBD on ischemic rat hearts.

Our study shows that CBD induces a substantial in vivo cardioprotective effect from ischemia that is not observed ex vivo.

Inasmuch as CBD has previously been administered to humans without causing side effects, it may represent a promising novel treatment for myocardial ischemia.”

http://ajpheart.physiology.org/content/293/6/H3602

Cannabinoid system as a potential target for drug development in the treatment of cardiovascular disease.

“Although cannabinoids have been recreationally employed for thousands of years, it was not until the discovery of their specific receptors, in the early nineties, that the molecular basis of cannabinoid activity have began to be understood.

Growing research in this field has demonstrated not only that the action of cannabinoids in mammals is mainly receptor-mediated, but also that endogenous cannabinoids, such as anandamide, are produced, metabolized, and taken up across the cell membrane through a facilitated uptake process.

The exogenous administration of cannabinoids, as well as the manipulation of their endogenous levels have been related to a variety of effects, such as analgesia, (temporary) impairment of cognition and learning, appetite enhancement and peripheral vasodilation.

Hence, the endocannabinoid system, including the CB1 and CB2 receptors, the metabolizing enzyme fatty acid amide hydrolase and the anandamide transporter, is a potential target for the development of novel therapeutic drugs in the treatment of various conditions, such as pain, feeding disorders and vascular disease among others.

Although most of the research in the field of cannabinoids has been focused on their effects in the central nervous system, a growing line of evidence indicates that cannabinoids can also play a major role in the control of physiopathological functions in the cardiovascular system.

In this context, endocannabinoids have been proposed as novel possible hypotensive agents, and have been involved in the hypotension observed in septic shock, acute myocardial infarction and cirrhosis. In addition, a protective role for endocannabinoids has been described in ischemia.”

http://www.ncbi.nlm.nih.gov/pubmed/15320476

[Cardiovascular effects of cannabinoids].

“The psychoactive properties of cannabinoids, the biologically active constituents of the marijuana plant, have long been recognized. Recent research has revealed that cannabinoids elicit not only neurobehavioral, and immunological, but also profound cardiovascular effects.

Similar effects can be elicited by the endogenous ligand arachidonyl ethanolamine (anandamide) and 2-arachidonoyl-glycerol.

The biological effects of cannabinoids are mediated by specific receptors.

Two cannabinoid receptors have been identified so far: CB1-receptors are expressed by different cells of the brain and in peripheral tissues, while CB2-receptors were found almost exclusively in immune cells.

Through the use of a selective CB1 receptor antagonist and CB1 receptor-knockout mice the hypotensive and bradycardic effects of cannabinoids in rodents could be attributed to activation of peripheral CB1 receptors. In hemodynamic studies using the radioactive microsphere technique in anesthetized rats, cannabinoids were found to be potent CB1-receptor dependent vasodilators in the coronary and cerebrovascular beds.

Recent findings implicate the endogenous cannabinoid system in the pathomechanism of haemorrhagic, endotoxic and cardiogenic shock.

Finally, there is evidence that the extreme mesenteric vasodilation, portal hypertension and systemic hypotension present in advanced liver cirrhosis are also mediated by the endocannabinoid system.

These exciting, recent research developments indicate that the endogenous cannabinoid system plays an important role in cardiovascular regulation, and pharmacological manipulation of this system may offer novel therapeutic approaches in a variety of pathological conditions.”

Cannabinoid pharmacology in the cardiovascular system: potential protective mechanisms through lipid signalling.

“Cannabinoids include not only plant-derived compounds (of which delta9-tetrahydrocannabinol is the primary psychoactive ingredient of cannabis), but also synthetic agents and endogenous substances termed endocannabinoids which include anandamide (2-arachidonoylethanolamide) and 2-arachidonoylglycerol.

Cannabinoids act on specific, G-protein-coupled, receptors which are currently divided into two types, CB1 and CB2. Relatively selective agonists and antagonists for these receptors have been developed, although one agent (SR141716A) widely used as an antagonist at CB1 receptors has non-cannabinoid receptor-mediated effects at concentrations which are often used to define the presence of the CB1 receptor.

Both cannabinoid receptors are primarily coupled to Gi/o proteins and act to inhibit adenylyl cyclase. Stimulation of CB1 receptors also modulates the activity of K+ and Ca2+ channels and of protein kinase pathways including protein kinase B (Akt) which might mediate effects on apoptosis. CB, receptors may activate the extracellular signal-regulated kinase cascade through ceramide signalling.

Cannabinoid actions on the cardiovascular system have been widely interpreted as being mediated by CB1 receptors although there are a growing number of observations, particularly in isolated heart and blood vessel preparations, that suggest that other cannabinoid receptors may exist.

Interestingly, the currently identified cannabinoid receptors appear to be related to a wider family of lipid receptor, those for the lysophospholipids, which are also linked to Gi/o protein signalling.

Anandamide also activates vanilloid VR1 receptors on sensory nerves and releases the vasoactive peptide, calcitonin gene-related peptide (CGRP), which brings about vasodilatation through its action on CGRP receptors.

Current evidence suggests that endocannabinoids have important protective roles in pathophysiological conditions such as shock and myocardial infarction.

Therefore, their cardiovascular effects and the receptors mediating them are the subject of increasing investigative interest.”

http://www.ncbi.nlm.nih.gov/pubmed/15005177

Endocannabinoids drive the acquisition of an alternative phenotype in microglia.

“The ability of microglia to acquire diverse states of activation, or phenotypes, reflects different features that are determinant for their contribution to homeostasis in the adult CNS, and their activity in neuroinflammation, repair or immunomodulation.

Despite the widely reported immunomodulatory effects of cannabinoids in both the peripheral immune system and the CNS, less is known about how the endocannabinoid signaling system (eCBSS) influence the microglial phenotype.

The general aim of the present study was to investigate the role of endocannabinoids in microglia polarization by using microglia cell cultures.

We show that alternative microglia (M2a) and acquired deactivated microglia (M2c) exhibit changes in the eCB machinery that favor the selective synthesis of 2-AG and AEA, respectively.

Once released, these eCBs might be able to act through CB1 and/or CB2 receptors in order to influence the acquisition of an M2 phenotype.

We present three lines of evidence that the eCBSS is critical for the acquisition of the M2 phenotype: (i) M2 polarization occurs on exposure to the two main endocannabinoids 2-AG and AEA in microglia cultures; (ii)cannabinoid receptor antagonists block M2 polarization; and, (iii) M2 polarization is dampened in microglia from CB2 receptor knockout mice.

Taken together, these results indicate the interest of eCBSS for the regulation of microglial activation in normal and pathological conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/26086345

Involvement of cannabinoid receptors in infrasonic noise-induced neuronal impairment.

“Excessive exposure to infrasound, a kind of low-frequency but high-intensity sound noise generated by heavy transportations and machineries, can cause vibroacoustic disease which is a progressive and systemic disease, and finally results in the dysfunction of central nervous system.

Our previous studies have demonstrated that glial cell-mediated inflammation may contribute to infrasound-induced neuronal impairment, but the underlying mechanisms are not fully understood.

Here, we show that cannabinoid (CB) receptors may be involved in infrasound-induced neuronal injury.

…our results provide the first evidence that CB receptors may be involved in infrasound-induced neuronal impairment possibly by affecting the release of proinflammatory cytokines.”

http://www.ncbi.nlm.nih.gov/pubmed/26058582

Inhibition of human neutrophil chemotaxis by endogenous cannabinoids and phytocannabinoids: evidence for a site distinct from CB1 and CB2.

“Here, we show a novel pharmacology for inhibition of human neutrophil migration by endocannabinoids, phytocannabinoids, and related compounds.

This study reveals that certain endogenous lipids, phytocannabinoids, and related ligands are potent inhibitors of human neutrophil migration, and it implicates a novel pharmacological target distinct from cannabinoid CB(1) and CB(2) receptors; this target is antagonized by the endogenous compound N-arachidonoyl l-serine.

Furthermore, our findings have implications for the potential pharmacological manipulation of elements of the endocannabinoid system for the treatment of various inflammatory conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/17965195