“The aim of the present study was to evaluate the efficacy of an oral formulation of Δ9-tetrahydrocannabinol (ECP002A) in patients with progressive multiple sclerosis (MS). Pain was significantly reduced when measured directly after administration of ECP002A in the clinic but not when measured in a daily diary. A similar pattern was observed in subjective muscle spasticity. Other clinical outcomes were not significantly different between active treatment and placebo. Cognitive testing indicated that there was no decline in cognition after 2 or 4 weeks of treatment attributable to ECP002A compared with placebo. Implications This study specifically underlines the added value of thorough investigation of pharmacokinetic and pharmacodynamic associations in the target population. Despite the complex interplay of psychoactive effects and analgesia, the current oral formulation of Δ9-tetrahydrocannabinol may play a role in the treatment of spasticity and pain associated with MS because it was well tolerated and had a stable pharmacokinetic profile.” https://www.ncbi.nlm.nih.gov/pubmed/28189366]]>
Tag Archives: Delta-9-Tetrahydrocannabinol
Cannabinoid Receptors in Regulating the GI Tract: Experimental Evidence and Therapeutic Relevance.
“Cannabinoid receptors are fundamentally involved in all aspects of intestinal physiology, such as motility, secretion, and epithelial barrier function. They are part of a broader entity, the so-called endocannabinoid system which also includes their endocannabinoid ligands and the ligands’ synthesizing/degrading enzymes.
The system has a strong impact on the pathophysiology of the gastrointestinal tract and is believed to maintain homeostasis in the gut by controlling hypercontractility and by promoting regeneration after injury.
For instance, genetic knockout of cannabinoid receptor 1 leads to inflammation and cancer of the intestines. Derivatives of Δ9-tetrahydrocannabinol, such as nabilone and dronabinol, activate cannabinoid receptors and have been introduced into the clinic to treat chemotherapy-induced emesis and loss of appetite; however, they may cause many psychotropic side effects.
New drugs that interfere with endocannabinoid degradation to raise endocannabinoid levels circumvent this obstacle and could be used in the future to treat emesis, intestinal inflammation, and functional disorders associated with visceral hyperalgesia.”
https://www.ncbi.nlm.nih.gov/pubmed/28161834
Endocannabinoid Signaling and the Hypothalamic-Pituitary-Adrenal Axis.
“The elucidation of Δ9-tetrahydrocannabinol as the active principal of Cannabis sativa in 1963 initiated a fruitful half-century of scientific discovery, culminating in the identification of the endocannabinoid signaling system, a previously unknown neuromodulatory system. A primary function of the endocannabinoid signaling system is to maintain or recover homeostasis following psychological and physiological threats. We provide a brief introduction to the endocannabinoid signaling system and its role in synaptic plasticity. The majority of the article is devoted to a summary of current knowledge regarding the role of endocannabinoid signaling as both a regulator of endocrine responses to stress and as an effector of glucocorticoid and corticotrophin-releasing hormone signaling in the brain. We summarize data demonstrating that cannabinoid receptor 1 (CB1R) signaling can both inhibit and potentiate the activation of the hypothalamic-pituitary-adrenal axis by stress. We present a hypothesis that the inhibitory arm has high endocannabinoid tone and also serves to enhance recovery to baseline following stress, while the potentiating arm is not tonically active but can be activated by exogenous agonists. We discuss recent findings that corticotropin-releasing hormone in the amygdala enables hypothalamic-pituitary-adrenal axis activation via an increase in the catabolism of the endocannabinoid N-arachidonylethanolamine. We review data supporting the hypotheses that CB1R activation is required for many glucocorticoid effects, particularly feedback inhibition of hypothalamic-pituitary-adrenal axis activation, and that glucocorticoids mobilize the endocannabinoid 2-arachidonoylglycerol. These features of endocannabinoid signaling make it a tantalizing therapeutic target for treatment of stress-related disorders but to date, this promise is largely unrealized.” https://www.ncbi.nlm.nih.gov/pubmed/28134998]]>
Topical application of THC containing products is not able to cause positive cannabinoid finding in blood or urine.
“A male driver was checked during a traffic stop. A blood sample was collected 35min later and contained 7.3ng/mL THC, 3.5ng/mL 11-hydroxy-THC and 44.6ng/mL 11-nor-9-carboxy-THC. The subject claimed to have used two commercially produced products topically that contained 1.7ng and 102ng THC per mg, respectively. In an experiment, three volunteers (25, 26 and 34 years) applied both types of salves over a period of 3days every 2-4h. The application was extensive (50-100cm2). Each volunteer applied the products to different parts of the body (neck, arm/leg and trunk, respectively). After the first application blood and urine samples of the participants were taken every 2-4h until 15h after the last application (overall n=10 urine and n=10 blood samples, respectively, for each participant). All of these blood and urine samples were tested negative for THC, 11-hydroxy-THC and 11-nor-9-carboxy-THC by a GC-MS method (LoD (THC)=0.40ng/mL; LoD (11-hydroxy-THC)=0.28ng/mL; LoD (THC-COOH)=1.6ng/mL;. LoD (THC-COOH in urine)=1.2ng/mL). According to our studies and further literature research on in vitro testing of transdermal uptake of THC, the exclusive application of (these two) topically applied products did not produce cannabinoid findings in blood or urine.” https://www.ncbi.nlm.nih.gov/pubmed/28122323]]>
Molecular Pharmacology of Phytocannabinoids.
“Cannabis sativa has been used for recreational, therapeutic and other uses for thousands of years.
The plant contains more than 120 C21 terpenophenolic constituents named phytocannabinoids. The Δ9-tetrahydrocannabinol type class of phytocannabinoids comprises the largest proportion of the phytocannabinoid content.
Δ9-tetrahydrocannabinol was first discovered in 1971. This led to the discovery of the endocannabinoid system in mammals, including the cannabinoid receptors CB1 and CB2.
Δ9-Tetrahydrocannabinol exerts its well-known psychotropic effects through the CB1 receptor but this effect of Δ9-tetrahydrocannabinol has limited the use of cannabis medicinally, despite the therapeutic benefits of this phytocannabinoid. This has driven research into other targets outside the endocannabinoid system and has also driven research into the other non-psychotropic phytocannabinoids present in cannabis.
This chapter presents an overview of the molecular pharmacology of the seven most thoroughly investigated phytocannabinoids, namely Δ9-tetrahydrocannabinol, Δ9-tetrahydrocannabivarin, cannabinol, cannabidiol, cannabidivarin, cannabigerol, and cannabichromene.
The targets of these phytocannabinoids are defined both within the endocannabinoid system and beyond.
The pharmacological effect of each individual phytocannabinoid is important in the overall therapeutic and recreational effect of cannabis and slight structural differences can elicit diverse and competing physiological effects.
The proportion of each phytocannabinoid can be influenced by various factors such as growing conditions and extraction methods. It is therefore important to investigate the pharmacology of these seven phytocannabinoids further, and characterise the large number of other phytocannabinoids in order to better understand their contributions to the therapeutic and recreational effects claimed for the whole cannabis plant and its extracts.”
https://www.ncbi.nlm.nih.gov/pubmed/28120231
“Cannabis has been cultivated by man since Neolithic times. It was used, among others for fiber and rope production, recreational purposes and as an excellent therapeutic agent.
The isolation and characterization of the structure of one of the main active ingredients of cannabis – Δ9 – tetrahydrocannabinol as well the discovery of its
“The physiological control of appetite and satiety, in which numerous neurotransmitters and neuropeptides play a role, is extremely complex. Here we describe the involvement of endocannabinoids in these processes.
These endogenous neuromodulators enhance appetite in animals.
The same effect is observed in animals and in humans with the psychotropic plant cannabinoid Delta(9)-tetrahydrocannabinol, which is an approved appetite-enhancing drug.
The CB(1) cannabinoid receptor antagonist SR141716A blocks the effects on feeding produced by the endocannabinoids. If administered to mice pups, this antagonist blocks suckling.
In obese humans, it causes weight reduction.
Very little is known about the physiological and biochemical mechanisms involved in the effects of Delta(9)-tetrahydrocannabinol and the cannabinoids in feeding and appetite.”
“Appetite stimulation via partial agonism of cannabinoid type 1 receptors by Δtetrahydrocannabinol (ΔTHC) is well documented and can be modulated by non-ΔTHC phytocannabinoids.
ΔTHC concentrations sufficient to elicit hyperphagia induce changes to both appetitive (reduced latency to feed) and consummatory (increased meal one size and duration) behaviours.
Here, we show that a cannabis extract containing too little ΔTHC to stimulate appetite can induce hyperphagia solely by increasing appetitive behaviours.
These results show only the increase in appetitive behaviours, which could be attributed to non-ΔTHC phytocannabinoids in the extract rather than ΔTHC.
Although further study is required to determine the constituents responsible for these effects, these results support the presence of non-ΔTHC cannabis constituent(s) that exert a stimulatory effect on appetite and likely lack the detrimental psychoactive effects of ΔTHC.”