Cannabinoid receptor systems: therapeutic targets for tumour intervention

Abstract

“The past decade has witnessed a rapid expansion of our understanding of the biological roles of cannabinoids and their cognate receptors. It is now certain that Delta9-tetrahydrocannabinol, the principle psychoactive component of the Cannabis sativa plant, binds and activates membrane receptors of the 7-transmembrane domain, G-protein-coupled superfamily. Several putative endocannabinoids have since been identified, including anandamide, 2-arachidonyl glycerol and noladin ether. Synthesis of numerous cannabinomimetics has also greatly expanded the repertoire of cannabinoid receptor ligands with the pharmacodynamic properties of agonists, antagonists and inverse agonists. Collectively, these ligands have proven to be powerful tools both for the molecular characterisation of cannabinoid receptors and the delineation of their intrinsic signalling pathways. Much of our understanding of the signalling mechanisms activated by cannabinoids is derived from studies of receptors expressed by tumour cells; hence, this review provides a succinct summary of the molecular pharmacology of cannabinoid receptors and their roles in tumour cell biology. Moreover, there is now a genuine expectation that the manipulation of cannabinoid receptor systems may have therapeutic potential for a diverse range of human diseases. Thus, this review also summarises the demonstrated antitumour actions of cannabinoids and indicates possible avenues for the future development of cannabinoids as antitumour agents.”

http://www.ncbi.nlm.nih.gov/pubmed/14640910

Changes in the Endocannabinoid System May Give Insight into new and Effective Treatments for Cancer

Logo of nihpa

“The endocannabinoid system comprises specific cannabinoid receptors such as Cb1 and Cb2, the endogenous ligands (anandamide and 2-arachidonyl glycerol among others) and the proteins responsible for their synthesis and degradation. This system has become the focus of research in recent years because of its potential therapeutic value several disease states. The following review describes our current knowledge of the changes that occur in the endocannabinoid system during carcinogenesis and then focuses on the effects of anandamide on various aspects of the carcinogenic process such as growth, migration, and angiogenesis in tumors from various origins.

Marijuana and its derivatives have been used in medicine for centuries, however, it was not until the isolation of the psychoactive component of Cannabis sativa (Δ9-tetrahydrocannabinol; Δ9-THC) and the subsequent discovery of the endogenous cannabinoid signaling system that research into the therapeutic value of this system reemerged. Ongoing research is determining that regulation of the endocannabinoid system may be effective in the treatment of pain (Calignano et al., 1998; Manzanares et al., 1999), glaucoma (Voth and Schwartz, 1997), and neurodegenerative disorders such as Parkinson’s disease (Piomelli et al., 2000) and multiple sclerosis (Baker et al., 2000). In addition, cannabinoids might be effective anti-tumoral agents because of their ability to inhibit the growth of various types of cancer cell lines in culture (De Petrocellis et al., 1998; Ruiz et al., 1999; Sanchez et al., 1998, 2001) and in laboratory animals (Galve-Roperh et al., 2000).

In conclusion, the endocannabinoid system exerts a myriad of effects on tumor cell growth, progression, angiogenesis, and migration. With a notable few exceptions, targeting the endocannabinoid system with agents that activate cannabinoid receptors or increase the endogenous levels of AEA may prove to have therapeutic benefit in the treatment of various cancers. Further studies into the downstream consequences of AEA treatment are required and may illuminate other potential therapeutic targets.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2791688/

Turned-Off Cannabinoid Receptor Turns On Colorectal Tumor Growth

“CB1 is well-established for relieving pain and nausea, elevating mood and stimulating appetite by serving as a docking station for the cannabinoid group of signaling molecules. It now may serve as a new path for cancer prevention or treatment.

“We’ve found that CB1 expression is lost in most colorectal cancers, and when that happens a cancer-promoting protein is free to inhibit cell death,” said senior author Raymond DuBois, M.D., Ph.D., provost and executive vice president of The University of Texas M. D. Anderson Cancer Center.

DuBois and collaborators from Vanderbilt-Ingram Cancer Center also show that CB1 expression can be restored with an existing drug, decitabine. They found that mice prone to developing intestinal tumors that also have functioning CB1 receptors develop fewer and smaller tumors when treated with a drug that mimics a cannabinoid receptor ligand. Ligands are molecules that function by binding to specific receptors. Agonists are synthetic molecules that mimic the action of a natural molecule.

“Potential application of cannabinoids as anti-tumor drugs is an exciting prospect, because cannabinoid agonists are being evaluated now to treat the side-effects of chemotherapy and radiation therapy,” DuBois said. “Turning CB1 back on and then treating with a cannabinoid agonist could provide a new approach to colorectal cancer treatment or prevention.”

Cannabinoids are a group of ligands that serve a variety of cell-signaling roles. Some are produced by the body internally (endocannabinoids). External cannabinoids include manmade versions and those present in plants, most famously the active ingredient in marijuana (THC).”

http://www.sciencedaily.com/releases/2008/08/080801074056.htm

Cannabinoids and the digestive tract.

“In the digestive tract there is evidence for the presence of high levels of endocannabinoids (anandamide and 2-arachidonoylglycerol) and enzymes involved in the synthesis and metabolism of endocannabinoids. Immunohistochemical studies have shown the presence of CB1 receptors on myenteric and submucosal nerve plexuses along the alimentary tract. Pharmacological studies have shown that activation of CB1 receptors produces relaxation of the lower oesophageal sphincter, inhibition of gastric motility and acid secretion, as well as intestinal motility and secretion. In general, CB1-induced inhibition of intestinal motility and secretion is due to reduced acetylcholine release from enteric nerves. Conversely, endocannabinoids stimulate intestinal primary sensory neurons via the vanilloid VR1 receptor, resulting in enteritis and enhanced motility. The endogenous cannabinoid system has been found to be involved in the physiological control of colonic motility and in some pathophysiological states, including paralytic ileus, intestinal inflammation and cholera toxin-induced diarrhoea. Cannabinoids also possess antiemetic effects mediated by activation of central and peripheral CB1 receptors.

Pharmacological modulation of the endogenous cannabinoid system could provide a new therapeutic target for the treatment of a number of gastrointestinal diseases, including nausea and vomiting, gastric ulcers, secretory diarrhoea, paralytic ileus, inflammatory bowel disease, colon cancer and gastro-oesophageal reflux conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/16596788

The endogenous cannabinoid, anandamide, induces cell death in colorectal carcinoma cells: a possible role for cyclooxygenase 2

Abstract

“BACKGROUND AND AIMS:

Cyclooxygenase 2 (COX-2) is upregulated in most colorectal cancers and is responsible for metabolism of the endogenous cannabinoid, anandamide, into prostaglandin-ethanolamides (PG-EAs). The aims of this study were to determine whether anandamide and PG-EAs induce cell death in colorectal carcinoma (CRC) cells, and whether high levels of COX-2 in CRC cells could be utilised for their specific targeting for cell death by anandamide.

METHODS:

We determined the effect of anandamide on human CRC cell growth by measuring cell growth and cell death, whether this was dependent on COX-2 protein expression or enzyme activity, and the potential involvement of PG-EAs in induction of cell death.

RESULTS:

Anandamide inhibited the growth of CRC cell lines HT29 and HCA7/C29 (moderate and high COX-2 expressors, respectively) but had little effect on the very low COX-2 expressing CRC cell line, SW480. Induction of cell death in HT29 and HCA7/C29 cell lines was partially rescued by the COX-2 selective inhibitor NS398. Cell death induced by anandamide was neither apoptosis nor necrosis. Furthermore, inhibition of fatty acid amide hydrolase potentiated the non-apoptotic cell death, indicating that anandamide induced cell death was mediated via metabolism of anandamide by COX-2, rather than its degradation into arachidonic acid and ethanolamine. Interestingly, both PGE2-EA and PGD2-EA induced classical apoptosis.

CONCLUSIONS:

These findings suggest anandamide may be a useful chemopreventive/therapeutic agent for colorectal cancer as it targets cells that are high expressors of COX-2, and may also be used in the eradication of tumour cells that have become resistant to apoptosis.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1774787/

The endogenous cannabinoid, anandamide, induces COX-2-dependent cell death in apoptosis-resistant colon cancer cells.

Abstract

“Despite recent advances in understanding colorectal tumour biology, there is still a need to improve the 5-year survival rate of patients with colorectal cancer as approximately 40% of patients presenting with advanced disease will remain resistant to therapy. One of the major contributing factors in resistance to therapy is the failure of colorectal tumour cells to undergo apoptosis. Hence there is an urgent need to develop novel therapeutic approaches that can target apoptosis-resistant cells. To this end, we investigated the potential efficacy of the endogenous cannabinoid anandamide to induce cell death in apoptosis-resistant colon cancer cells. Here, for the first time, we show that anandamide can induce cell death in the apoptosis-resistant HCT116 Bax-/- colorectal cell line. Importantly, we provide direct genetic evidence that this induction of cell death is dependent on COX-2 expression. Interestingly, increased COX-2 expression also sensitised the SW480 colorectal cancer cell line (low endogenous COX-2) to anandamide-induced death, whereas COX-2 suppression by RNAi inhibited anandamide-induced cell death in the HCA7 colorectal cancer cell line (high endogenous COX-2 expression). This COX-2-dependent death was independent of cannabinoid receptor engagement (CB1 or CB2), and not a direct consequence of reactive oxygen species (ROS) formation. This study demonstrates a novel utilisation for COX-2 expression, targeting apoptotic defective colorectal cancer cells for destruction by anandamide. As COX-2 is not expressed in the normal colorectal epithelium, but highly expressed in colorectal tumours and apoptosis resistance contributes to treatment failure, these data suggest that anandamide has the potential to be an effective therapeutic in colorectal cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/20514410

Effects of anandamide on polyamine levels and cell growth in human colon cancer cells.

Abstract

“BACKGROUND:

Anandamide (AEA) is an endogenous agonist for cannabinoid receptor CB1-R and seems to be involved in the control of cancer growth. Polyamines are compounds that play an important role in cell proliferation and differentiation. Our aim was to investigate the effect of AEA on the polyamine levels (putrescine, spermidine and spermine) and cell growth of three human colon cancer cell lines, positive for CB1-R.

MATERIALS AND METHODS:

After AEA treatment of DLD-1, HT-29 and SW620 cells, polyamine analysis was performed by high-performance liquid chromatography (HPLC) and cell growth was measured by 3-(4,5 di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. CB1 gene expression was determined using reverse transcription and polymerase chain reaction (RT-PCR).

RESULTS:

AEA significantly reduced polyamine levels and cell proliferation dose-dependently when the tested cell lines were exposed for 24 h and 48 h. This inhibitory effect was mediated by CB1-R, since SR 1411716A, a selective CB-1 receptor antagonist, was able to entirely antagonize the effect of AEA. CB1-R mRNA levels were enhanced after AEA treatment in DLD-1 cells, whereas no induction was found in HT-29 and SW620 cells.

CONCLUSION:

It appears that mechanisms by which AEA may affect growth of colon cancer cells involve a decrease in cell proliferation rate by reducing the polyamine levels.”

http://www.ncbi.nlm.nih.gov/pubmed/20682986

Alternative targets within the endocannabinoid system for future treatment of gastrointestinal diseases.

Abstract

“Many beneficial effects of herbal and synthetic cannabinoids on gut motility and inflammation have been demonstrated, suggesting a vast potential for these compounds in the treatment of gastrointestinal disorders. These effects are based on the so-called ‘endocannabinoid system’ (ECS), a cooperating network of molecules that regulate the metabolism of the body’s own and of exogenously administered cannabinoids. The ECS in the gastrointestinal tract quickly responds to homeostatic disturbances by de novo synthesis of its components to maintain homeostasis, thereby offering many potential targets for pharmacological intervention. Of major therapeutic interest are nonpsychoactive cannabinoids or compounds that do not directly target cannabinoid receptors but still possess cannabinoid-like properties. Drugs that inhibit endocannabinoid degradation and raise the level of endocannabinoids are becoming increasingly promising alternative therapeutic tools to manipulate the ECS.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174079/

Induction of apoptosis by cannabinoids in prostate and colon cancer cells is phosphatase dependent.

Abstract

“AIM:

We hypothesized that the anticancer activity of cannabinoids was linked to induction of phosphatases.

MATERIALS AND METHODS:

The effects of cannabidiol (CBD) and the synthetic cannabinoid WIN-55,212 (WIN) on LNCaP (prostate) and SW480 (colon) cancer cell proliferation were determined by cell counting; apoptosis was determined by cleavage of poly(ADP)ribose polymerase (PARP) and caspase-3 (Western blots); and phosphatase mRNAs were determined by real-time PCR. The role of phosphatases and cannabinoid receptors in mediating CBD- and WIN-induced apoptosis was determined by inhibition and receptor knockdown.

RESULTS:

CBD and WIN inhibited LNCaP and SW480 cell growth and induced mRNA expression of several phosphatases, and the phosphatase inhibitor sodium orthovanadate significantly inhibited cannabinoid-induced PARP cleavage in both cell lines, whereas only CBD-induced apoptosis was CB1 and CB2 receptor-dependent.

CONCLUSION:

Cannabinoid receptor agonists induce phosphatases and phosphatase-dependent apoptosis in cancer cell lines; however, the role of the CB receptor in mediating this response is ligand-dependent.”

http://www.ncbi.nlm.nih.gov/pubmed/22110202

Differential expression of cannabinoid receptors in the human colon: cannabinoids promote epithelial wound healing.

Abstract

“BACKGROUND & AIMS:

Two G-protein-coupled cannabinoid receptors, termed CB1 and CB2, have been identified and several mammalian enteric nervous systems express CB1 receptors and produce endocannabinoids. An immunomodulatory role for the endocannabinoid system in gastrointestinal inflammatory disorders has been proposed and this study sought to determine the location of both cannabinoid receptors in human colon and to investigate epithelial receptor function.

METHODS:

The location of CB1 and CB2 receptors in human colonic tissue was determined by immunohistochemistry. Primary colonic epithelial cells were treated with both synthetic and endogenous cannabinoids in vitro, and biochemical coupling of the receptors to known signaling events was determined by immunoblotting. Human colonic epithelial cell lines were used in cannabinoid-binding studies and as a model for in vitro wound-healing experiments.

RESULTS:

CB1-receptor immunoreactivity was evident in normal colonic epithelium, smooth muscle, and the submucosal myenteric plexus. CB1- and CB2-receptor expression was present on plasma cells in the lamina propria, whereas only CB2 was present on macrophages. CB2 immunoreactivity was seen in the epithelium of colonic tissue characteristic of inflammatory bowel disease. Cannabinoids enhanced epithelial wound closure either alone or in combination with lysophosphatidic acid through a CB1-lysophosphatidic acid 1 heteromeric receptor complex.

CONCLUSIONS:

CB1 receptors are expressed in normal human colon and colonic epithelium is responsive biochemically and functionally to cannabinoids. Increased epithelial CB2-receptor expression in human inflammatory bowel disease tissue implies an immunomodulatory role that may impact on mucosal immunity.”

http://www.ncbi.nlm.nih.gov/pubmed/16083701