“The endocannabinoid system is a signaling system involved in a wide range of biological effects. Literature strongly suggests the endocannabinoid system role in the pathogenesis of cancer and that its pharmacological activation produces therapeutic benefits. Last research promotes the endocannabinoid system modulation by inhibition of endocannabinoids hydrolytic enzymes instead of direct activation of endocannabinoid receptors to avoid detrimental effects on cognition and motor control. Here we report the identification of N-acylethanolamine-hydrolyzing acid amidase (NAAA) inhibitors able to reduce cell proliferation and migration and cause cell death on different bladder cancer cell lines. These molecules were designed, synthesized and characterized and active compounds were selected by a fluorescence high-throughput screening method set-up on human recombinant NAAA that also allows to characterize the mechanism of inhibition. Together our results suggest an important role for NAAA in cell migration and in inducing tumor cell death promoting this enzyme as pharmacological target against bladder cancer.” https://www.ncbi.nlm.nih.gov/pubmed/28062195]]>
Tag Archives: endocannabinoid system
Potential roles of (endo)cannabinoids in the treatment of glaucoma: from intraocular pressure control to neuroprotection.
“Recent evidence shows that the endocannabinoid system is involved in the pathogenesis of numerous neurodegenerative diseases of the central nervous system. Pharmacologic modulation of cannabinoid receptors or the enzymes involved in the synthesis, transport, or breakdown of endogenous cannabinoids has proved to be a valid alternative to conventional treatment of these diseases.
In this review, we will examine recent findings that demonstrate the involvement of the endocannabinoid system in glaucoma, a major neurodegenerative disease of the eye that is a frequent cause of blindness.
Experimental findings indicate that the endocannabinoid system contributes to the control of intraocular pressure (IOP), by modulating both production and drainage of aqueous humor.
There is also a growing body of evidence of the involvement of this system in mechanisms leading to the death of retinal ganglion cells, which is the end result of glaucoma.
Molecules capable of interfering with the ocular endocannabinoid system could offer valid alternatives to the treatment of this disease, based not only on the reduction of IOP but also on neuroprotection.”
https://www.ncbi.nlm.nih.gov/pubmed/18929127
The gastrointestinal tract – a central organ of cannabinoid signaling in health and disease
“In ancient medicine, extracts of the marijuana plant Cannabis sativa were used against diseases of the gastrointestinal (GI) tract. Today, our knowledge of the ingredients of the Cannabis plant has remarkably advanced enabling us to use a variety of herbal and synthetic cannabinoid (CB) compounds to study the endocannabinoid system (ECS), a physiologic entity that controls tissue homeostasis with the help of endogenously produced CBs and their receptors. After many anecdotal reports suggested beneficial effects of Cannabis in GI disorders, it was not surprising to discover that the GI tract accommodates and expresses all the components of the ECS. The following review summarizes important and recent findings on the role of CB receptors and their ligands in the GI tract with emphasis on GI disorders, such as irritable bowel syndrome, inflammatory bowel disease, and colon cancer.” https://www.ncbi.nlm.nih.gov/pubmed/27561826]]>
[Cannabinoid applications in glaucoma].
“Glaucoma is a slowly progressive optic neuropathy that is one of the leading causes of legal blindness throughout the world. Currently there is a limited group of topical drugs for the medical treatment of glaucoma is currently limited, and research needs to be focused on new therapeutic horizons, such as the potential usefulness of the cannabinoid agonists for the treatment of glaucoma.
To review the current scientific literature related to the beneficial effects derived from the different ways of administration of cannabinoids indicated for the glaucomatous optic neuropathy.
Cannabinoid receptors have shown an intense expression in ocular tissues implicated in the regulation of the intraocular pressure, as well as inner layers of the retina. Through activation of CB1 and CB1 specific receptors and through other still unknown pathways, the cannabinoid agonists have shown both a clear hypotensive, as well as an experimentally proved neuroprotective effect on retinal ganglion cells.CONCLUSIONS:
Some cannabinoid agonists (WIN 55212-2, anandamide) have demonstrated, in experimental studies, to act as «ideal drugs» in the management of glaucoma, as they have been shown to have good tolerability after topical application, efficiently reduce intraocular pressure, and behave as neuroprotectors on retinal ganglion cells.” https://www.ncbi.nlm.nih.gov/pubmed/21414525]]>Neural contractions in colonic strips from patients with diverticular disease: role of endocannabinoids and substance P
“Diverticulosis is a common disease of not completely defined pathogenesis. Motor abnormalities of the intestinal wall have been frequently described but very little is known about their mechanisms. We investigated in vitro the neural response of colonic longitudinal muscle strips from patients undergoing surgery for complicated diverticular disease (diverticulitis). Neural control of colon motility is profoundly altered in patients with diverticulitis. Their raised levels of anandamide, apparent desensitisation of the presynaptic neural cannabinoid CB1 receptor, and the SR141716 induced intrinsic response, suggest that endocannabinoids may be involved in the pathophysiology of complications of colonic diverticular disease. Agents acting on the endocannabinoid system could eventually find therapeutic application in colonic inflammatory and motility disorders.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1856307/]]>
Neuroimmmune interactions of cannabinoids in neurogenesis: focus on interleukin-1β (IL-1β) signalling.

“Neuroimmune networks and the brain endocannabinoid system contribute to the maintenance of neurogenesis.
Activation of cannabinoid receptors suppresses chronic inflammatory responses through the attenuation of pro-inflammatory mediators. Moreover, the endocannabinoid system directs cell fate specification of NSCs (neural stem cells) in the CNS (central nervous system).
The aim of our work is to understand better the relationship between the endocannabinoid and the IL-1β (interleukin-1β) associated signalling pathways and NSC biology, in order to develop therapeutical strategies on CNS diseases that may facilitate brain repair.
NSCs express functional CB1 and CB2 cannabinoid receptors, DAGLα (diacylglycerol lipase α) and the NSC markers SOX-2 and nestin. We have investigated the role of CB1 and CB2 cannabinoid receptors in the control of NSC proliferation and in the release of immunomodulators [IL-1β and IL-1Ra (IL-1 receptor antagonist)] that control NSC fate decisions. Pharmacological blockade of CB1 and/or CB2 cannabinoid receptors abolish or decrease NSC proliferation, indicating a critical role for both CB1 and CB2 receptors in the proliferation of NSC via IL-1 signalling pathways.
Thus the endocannabinoid system, which has neuroprotective and immunomodulatory actions mediated by IL-1 signalling cascades in the brain, could assist the process of proliferation and differentiation of embryonic or adult NSCs, and this may be of therapeutic interest in the emerging field of brain repair.
In summary, cannabinoids and IL-1β seem to play antagonistic roles in neurogenesis: although cannabinoids increase proliferation and induce formation and maturation of new neurons, IL-1β blocks proliferation and formation of new neurons, inducing a shift towards a glial fate. This may be important in situations such as in aging, neurodegenerative diseases, and lesions of the brain and spinal cord.”
“Increased food consumption following ∆(9)-tetrahydrocannabinol-induced cannabinoid type 1 receptor agonism is well documented.
However, possible non-∆(9)-tetrahydrocannabinol phytocannabinoid-induced feeding effects have yet to be fully investigated. Therefore, we have assessed the effects of the individual phytocannabinoids,
“The physiological control of appetite and satiety, in which numerous neurotransmitters and neuropeptides play a role, is extremely complex. Here we describe the involvement of endocannabinoids in these processes.
These endogenous neuromodulators enhance appetite in animals.
The same effect is observed in animals and in humans with the psychotropic plant cannabinoid Delta(9)-tetrahydrocannabinol, which is an approved appetite-enhancing drug.
The CB(1) cannabinoid receptor antagonist SR141716A blocks the effects on feeding produced by the endocannabinoids. If administered to mice pups, this antagonist blocks suckling.
In obese humans, it causes weight reduction.
Very little is known about the physiological and biochemical mechanisms involved in the effects of Delta(9)-tetrahydrocannabinol and the cannabinoids in feeding and appetite.”