Maternal high-fat diet induces sex-specific endocannabinoid system changes in newborn rats and programs adiposity, energy expenditure and food preference in adulthood.

The Journal of Nutritional Biochemistry

“Early life inadequate nutrition triggers developmental adaptations and adult chronic disease.

Maternal high-fat (HF) diet promotes visceral obesity and hypothalamic leptin resistance in male rat offspring at weaning and adulthood.

Obesity is related to over active endocannabinoid system (ECS). The ECS consists mainly of endogenous ligands, cannabinoid receptors (CB1 and CB2), and the enzymes fatty acid anandamide hydrolase (FAAH) and monoacylglycerol lipase (MAGL).

We hypothesized that perinatal maternal HF diet would regulate offspring ECS in hypothalamus and brown adipose tissue (BAT) at birth, prior to visceral obesity development, and program food preference and energy expenditure of adult offspring.

In conclusion, maternal HF diet alters ECS components and energy metabolism targets in hypothalamus and BAT of offspring at birth, in a sex-specific manner, which may contribute for hyperphagia, food preference and higher adiposity later in life.”

https://www.ncbi.nlm.nih.gov/pubmed/29102876

http://www.sciencedirect.com/science/article/pii/S0955286317303042?via%3Dihub

Cannabinoid CB1 Discrimination: Effects of Endocannabinoids and Catabolic Enzyme Inhibitors.

“An improved understanding of the endocannabinoid system has provided new avenues of drug discovery and development toward the management of pain and other behavioral maladies. Exogenous cannabinoid type-1 (CB1) receptor agonists such as Δ9-tetrahydrocannabinol are increasingly utilized for their medicinal actions; however, their utility is constrained by concern regarding abuse-related subjective effects. This has led to growing interest in the clinical benefit of indirectly enhancing the activity of the highly labile endocannabinoids N-arachidonoylethanolamine (anandamide; AEA) and/or 2-arachidonoylglycerol (2-AG) via catabolic enzyme inhibition. The present studies were conducted to determine whether such actions can lead to CB1 agonist-like subjective effects, as reflected in the presence or absence of CB1-related discriminative-stimulus effects in laboratory subjects. Squirrel monkeys (n=8) that discriminated the CB1 full agonist AM4054 (0.01 mg/kg) from vehicle were used to study, first, inhibitors of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MGL) alone or in combination [FAAH (URB597, AM4303); MGL (AM4301); FAAH/MGL (AM4302)] and, second, the ability of the endocannabinoids AEA and 2-AG to produce CB1 agonist-like effects when administered alone or after enzyme inhibition. Results indicate that CB1-related discriminative-stimulus effects were produced by combined, but not selective, inhibition of FAAH and MGL, and that these effects were non-surmountably antagonized by low doses of rimonabant. Additionally, FAAH- or MGL-inhibition revealed CB1-like subjective effects produced by AEA, but not 2-AG. Taken together, the present data suggest that therapeutic effects of combined, but not selective, enhancement of AEA or 2-AG activity via enzyme inhibition may be accompanied by CB1 receptor-mediated subjective effects.” https://www.ncbi.nlm.nih.gov/pubmed/28947487 http://jpet.aspetjournals.org/content/early/2017/09/25/jpet.117.244392]]>

Targeting the Endocannabinoid System to Treat Sepsis

“Sepsis is a complex immune disorder that can affect the function of almost all organ systems in the body. This disorder is characterised by a malfunctioning immune response to an infection that involves both pro-inflammatory and immunosuppressive mediators. This leads to severe damage and failure of vital organs, resulting in patient death. Sepsis, septic shock, and systemic inflammatory response syndrome are the leading causes of mortality in surgical intensive care unit patients internationally. The current lack of viable therapeutic treatment options for sepsis underscores our insufficient understanding of this complex disease. The endocannabinoid system, a key regulator of essential physiological functions including the immune system, has recently emerged as a potential therapeutic target for sepsis treatment. The endocannabinoid system acquires its name from the plant Cannabis Sativa, which has been used medically to treat a variety of ailments, as well as recreationally for centuries. Cannabis Sativa contains more than 60 active phytocannabinoids with the primary phytocannabinoid Δ9-tetrahydrocannabinol (THC), (6) activating both endogenous endocannabinoid receptors. The endocannabinoid system represents a potential therapeutic target in sepsis due to the presence of cannabinoid receptors (CB2) on immune cells. In this review we discuss how various targets within the endocannabinoid system can be manipulated to treat the immune consequences of sepsis. One of the targets outlined are the endocannabinoid receptors and modulation of their activity through pharmacological agonists and antagonists. Another therapeutic target covered in this review is the modulation of the endocannabinoid degradative enzyme’s activity. Modulation of degradative enzyme activity can change the levels of endogenous cannabinoids thereby altering immune activity. Overall, activation of the CB2 receptors causes immunosuppression and can be beneficial during the hyperactivated immune state of sepsis, while suppression of the CB2 receptors may be beneficial during a hypoimmune septic state. The endocannabinoid system modulates the immune response in experimental sepsis. Manipulating the endocannabinoid system may have potential therapeutic benefit in clinical sepsis where immune and inflammatory dysfunction can be detrimental. Multiple targets exist within the endocannabinoid system, e.g. the system can be targeted at the level of receptors by administration of synthetic compounds, similar to the endocannabinoids, which either increase or inhibit receptor activation to provide the desired therapeutic effect. Alternatively, the endogenous enzymes that degrade endocannabinoids or cannabinoid-like lipids can also be targeted in order to manipulate the levels of endocannabinoids. Proper identification of the septic stage is crucial to determine the adequate therapeutic response that will be most beneficial. Due to the biphasic nature of sepsis immunopathology, immune suppression through endocannabinoid modulation can help mitigate the hyper-immune response during the early septic state, while immune activation may be beneficial in later stages.” http://www.signavitae.com/2013/05/targeting-the-endocannabinoid-system-to-treat-sepsis/ http://www.signavitae.com/2013/05/targeting-the-endocannabinoid-system-to-treat-sepsis/]]>

Targeting fatty acid amide hydrolase as a therapeutic strategy for antitussive therapy.

“Cough is the most common reason to visit a primary care physician, yet it remains an unmet medical need. Fatty acid amide hydrolase (FAAH) is an enzyme that breaks down endocannabinoids, and inhibition of FAAH produces analgesic and anti-inflammatory effects. Cannabinoids inhibit vagal sensory nerve activation and the cough reflex, so it was hypothesised that FAAH inhibition would produce antitussive activity via elevation of endocannabinoids. Primary vagal ganglia neurons, tissue bioassay, in vivoelectrophysiology and a conscious guinea pig cough model were utilised to investigate a role for fatty acid amides in modulating sensory nerve activation in vagal afferents. FAAH inhibition produced antitussive activity in guinea pigs with concomitant plasma elevation of the fatty acid amides N-arachidonoylethanolamide (anandamide), palmitoylethanolamide, N-oleoylethanolamide and linoleoylethanolamide. Palmitoylethanolamide inhibited tussive stimulus-induced activation of guinea pig airway innervating vagal ganglia neurons, depolarisation of guinea pig and human vagus, and firing of C-fibre afferents. These effects were mediated via a cannabinoid CB2/Gi/o-coupled pathway and activation of protein phosphatase 2A, resulting in increased calcium sensitivity of calcium-activated potassium channels. These findings identify FAAH inhibition as a target for the development of novel, antitussive agents without the undesirable side-effects of direct cannabinoid receptor agonists.” https://www.ncbi.nlm.nih.gov/pubmed/28931663 http://erj.ersjournals.com/content/50/3/1700782]]>

Effects of Centrally Administered Endocannabinoids and Opioids on Orofacial Pain Perception in Rats.

“Endocannabinoids and opioids play a vital role in mediating pain-induced analgesia. The specific effects of these compounds within orofacial region are largely unknown. In this study we tried to determine whether the increase of cannabinoid and opioid concentration in cerebrospinal fluid affects impulse transmission between the motor centers localized in the vicinity of the third and fourth cerebral ventricles.

We demonstrated that in the orofacial area analgesic activity is modulated by AEA and that EM-2-induced antinociception was mediated by MOR and CB1 receptors. The action of AEA and EM-2 is tightly regulated by FAAH and FAAH/MAGL, by preventing the breakdown of endogenous cannabinoids in regions where they are produced on demand.

Therefore, the current findings support the therapeutic potential of FAAH and FAAH/MAGL inhibitors as novel pharmacotherapeutic agents for orofacial pain.”

https://www.ncbi.nlm.nih.gov/pubmed/28771697 http://onlinelibrary.wiley.com/doi/10.1111/bph.13970/abstract]]>

Metabolism of the Endocannabinoid Anandamide: Open Questions after 25 Years.

Image result for frontiers in molecular neuroscience “Cannabis extracts have been used for centuries, but its main active principle ∆9-tetrahydrocannabinol (THC) was identified about 50 years ago. Yet, it is only 25 years ago that the first endogenous ligand of the same receptors engaged by the cannabis agents was discovered. This “endocannabinoid (eCB)” was identified as N-arachidonoylethanolamine (or anandamide (AEA)), and was shown to have several receptors, metabolic enzymes and transporters that altogether drive its biological activity. Here I report on the latest advances about AEA metabolism, with the aim of focusing open questions still awaiting an answer for a deeper understanding of AEA activity, and for translating AEA-based drugs into novel therapeutics for human diseases.” https://www.ncbi.nlm.nih.gov/pubmed/28611591
http://journal.frontiersin.org/article/10.3389/fnmol.2017.00166/full
]]>