Phytocannabinoids as novel therapeutic agents in CNS disorders.

Abstract

“The Cannabis sativa herb contains over 100 phytocannabinoid (pCB) compounds and has been used for thousands of years for both recreational and medicinal purposes. In the past two decades, characterisation of the body’s endogenous cannabinoid (CB) (endocannabinoid, eCB) system (ECS) has highlighted activation of central CB(1) receptors by the major pCB, Δ(9)-tetrahydrocannabinol (Δ(9)-THC) as the primary mediator of the psychoactive, hyperphagic and some of the potentially therapeutic properties of ingested cannabis. Whilst Δ(9)-THC is the most prevalent and widely studied pCB, it is also the predominant psychotropic component of cannabis, a property that likely limits its widespread therapeutic use as an isolated agent. In this regard, research focus has recently widened to include other pCBs including cannabidiol (CBD), cannabigerol (CBG), Δ(9)tetrahydrocannabivarin (Δ(9)-THCV) and cannabidivarin (CBDV), some of which show potential as therapeutic agents in preclinical models of CNS disease. Moreover, it is becoming evident that these non-Δ(9)-THC pCBs act at a wide range of pharmacological targets, not solely limited to CB receptors. Disorders that could be targeted include epilepsy, neurodegenerative diseases, affective disorders and the central modulation of feeding behaviour. Here, we review pCB effects in preclinical models of CNS disease and, where available, clinical trial data that support therapeutic effects. Such developments may soon yield the first non-Δ(9)-THC pCB-based medicines.”

http://www.ncbi.nlm.nih.gov/pubmed/21924288

Plant, synthetic, and endogenous cannabinoids in medicine.

Abstract

“Although used for more than 4000 years for recreational and medicinal purposes, Cannabis and its best-known pharmacologically active constituents, the cannabinoids, became a protagonist in medical research only recently. This revival of interest is explained by the finding in the 1990s of the mechanism of action of the main psychotropic cannabinoid, Delta9-tetrahydrocannabinol (THC), which acts through specific membrane receptors, the cannabinoid receptors. The molecular characterization of these receptors allowed the development of synthetic molecules with cannabinoid and noncannabinoid structure and with higher selectivity, metabolic stability, and efficacy than THC, as well as the development of antagonists that have already found pharmaceutical application. The finding of endogenous agonists at these receptors, the endocannabinoids, opened new therapeutic possibilities through the modulation of the activity of cannabinoid receptors by targeting the biochemical mechanisms controlling endocannabinoid tissue levels.”

http://www.ncbi.nlm.nih.gov/pubmed/16409166

Phytocannabinoids and endocannabinoids.

“Progress in understanding the molecular mechanisms of cannabis action was made after discovery of cannabinoid receptors in the brain and the finding of endogenous metabolites with affinity to them. Activation of cannabinoid receptors on synaptic terminals results in regulation of ion channels, neurotransmitter release and synaptic plasticity

. Neuromodulation of synapses by the cannabinoids is proving to have a wide range of functional effects, making them potential targets as medical preparations in a variety of illnesses, including some mental disorders and neurodegenerative illnesses. Cannabis contains a large amount of substances with affinity for the cannabinoid receptors. The endocannabinoids are a family of lipid neurotransmitters that engage the same membrane receptors targeted by tetrahydrocannabinol and that mediate retrograde signal from postsynaptic neurons to presynaptic ones.

 Discovery of endogenous cannabinoids and studies of the physiological functions of the cannabinoid system in the brain and body are producing a number of important findings about the role of membrane lipids and fatty acids in nerve signal transduction. Plant, endogenous and synthetic cannabinoids are using in these studies. The role of lipid membranes in the cannabinoid system follows from the fact that the source and supply of endogenous cannabinoids are derived from arachidonic acid, an important membrane constituent

. The study of structure-activity relationships of molecules which influence the cannabinoid system in the brain and body is crucial in search of medical preparations with the therapeutic effects of the phytocannabinoids without the negative effects on cognitive function attributed to cannabis.”

http://www.ncbi.nlm.nih.gov/pubmed/19630737