Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization.

Image result for autophagy journal

“Autophagy is considered primarily a cell survival process, although it can also lead to cell death. However, the factors that dictate the shift between these 2 opposite outcomes remain largely unknown. In this work, we used Δ9-tetrahydrocannabinol (THC, the main active component of marijuana, a compound that triggers autophagy-mediated cancer cell death) and nutrient deprivation (an autophagic stimulus that triggers cytoprotective autophagy) to investigate the precise molecular mechanisms responsible for the activation of cytotoxic autophagy in cancer cells. By using a wide array of experimental approaches we show that THC (but not nutrient deprivation) increases the dihydroceramide:ceramide ratio in the endoplasmic reticulum of glioma cells, and this alteration is directed to autophagosomes and autolysosomes to promote lysosomal membrane permeabilization, cathepsin release and the subsequent activation of apoptotic cell death. These findings pave the way to clarify the regulatory mechanisms that determine the selective activation of autophagy-mediated cancer cell death.”

http://www.ncbi.nlm.nih.gov/pubmed/27635674

From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology.

Image result for Physiol Rev.

“Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS).

This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs.

In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.”

http://www.ncbi.nlm.nih.gov/pubmed/27630175

A preliminary evaluation of the relationship of cannabinoid blood concentrations with the analgesic response to vaporized cannabis.

Image result for journal of pain research

“A randomized, placebo-controlled crossover trial utilizing vaporized cannabis containing placebo and 6.7% and 2.9% delta-9-tetrahydrocannabinol (THC) was performed in 42 subjects with central neuropathic pain related to spinal cord injury and disease.

Dose-dependent improvement in pain score was evident across all pain scale elements.

Plans for future work are outlined to explore the relationship of plasma concentrations with the analgesic response to different cannabinoids.

Such an appraisal of descriptors might contribute to the identification of distinct pathophysiologic mechanisms and, ultimately, the development of mechanism-based treatment approaches for neuropathic pain, a condition that remains difficult to treat.”

http://www.ncbi.nlm.nih.gov/pubmed/27621666

Delineating the Efficacy of a Cannabis-Based Medicine at Advanced Stages of Dementia in a Murine Model.

 

Image result for J Alzheimers Dis.

“Previous reports have demonstrated that the combination of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) botanical extracts, which are the components of an already approved cannabis-based medicine, reduce the Alzheimer-like phenotype of AβPP/PS1 transgenic mice when chronically administered during the early symptomatic stage.

Here, we provide evidence that such natural cannabinoids are still effective in reducing memory impairment in AβPP/PS1 mice at advanced stages of the disease but are not effective in modifying the Aβ processing or in reducing the glial reactivity associated with aberrant Aβ deposition as occurs when administered at early stages of the disease.

The present study also demonstrates that natural cannabinoids do not affect cognitive impairment associated with healthy aging in wild-type mice.

The positive effects induced by Δ9-THC and CBD in aged AβPP/PS1 mice are associated with reduced GluR2/3 and increased levels of GABA-A Ra1 in cannabinoid-treated animals when compared with animals treated with vehicle alone.”

http://www.ncbi.nlm.nih.gov/pubmed/27567873

Severe motor and vocal tics controlled with Sativex®.

Image result for Australas Psychiatry

“A single case report on cannabinoid treatment for treatment-resistant Tourette syndrome (TS).

METHOD:

Our subject received 10.8 mg Tetrahydocannabinol and 10 mg cannabidiol daily, in the form of two oro-mucosal sprays of ‘Sativex®‘, twice daily. Assessment was pre-treatment and at week one, two, and four during treatment. He completed the Yale Global Tic Severity Scale as a subjective measure, and was videoed at each stage. The videos were objectively rated by two assessors, blind to the stage of treatment, using the Original Rush Videotape Rating Scale.

RESULTS:

Both subjective and objective measures demonstrated marked improvement in the frequency and severity of motor and vocal tics post-treatment. There was good interrater reliability of results.

CONCLUSIONS:

Our results support previous research suggesting that cannabinoids are a safe and effective treatment for TS and should be considered in treatment-resistant cases.

Further studies are needed to substantiate our findings.”

http://www.ncbi.nlm.nih.gov/pubmed/27558217

Modulation of Gut-Specific Mechanisms by Chronic Δ9-Tetrahydrocannabinol Administration in Male Rhesus Macaques Infected with Simian Immunodeficiency Virus: A Systems Biology Analysis

 

“The major psychoactive cannabinoid in marijuana, Δ9-tetrahydrocannabinol (THC), exerts unique effects on the progression of simian immunodeficiency virus (SIV) infection.

Previous studies from our laboratory have shown that chronic THC administration ameliorates SIV disease progression and significantly reduces the morbidity and mortality of male SIV-infected macaques.

Our studies have demonstrated that chronic Δ9-tetrahydrocannabinol (THC) administration results in a generalized attenuation of viral load and tissue inflammation in simian immunodeficiency virus (SIV)-infected male rhesus macaques.

Gut-associated lymphoid tissue is an important site for HIV replication and inflammation that can impact disease progression.

Our results indicate that chronic THC administration modulated duodenal T cell populations, favored a pro-Th2 cytokine balance, and decreased intestinal apoptosis. These findings reveal novel mechanisms that may potentially contribute to cannabinoid-mediated disease modulation.

In summary, using a systems biology approach to understanding the impact of chronic cannabinoid treatment on gut-associated immunopathology, we identified relevant mechanisms that can potentially modulate disease progression.

Our results suggest that gut immunomodulation through changes in gene expression, cytokine profiles, and immune cell populations could potentially contribute to chronic THC modulation of SIV disease progression. Moreover, they reveal novel mechanisms that may potentially contribute to decreased morbidity and mortality.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046212/

Medical Marijuana-Opportunities and Challenges

“Over the recent years, public and political opinions have demonstrated increasing support for the legalization of medical marijuana.

To date, 24 states as well as the District of Columbia have legalized cannabis for medical use, 4 states have legalized the recreational use of Marijuana.

Marijuana is derived from the hemp plant Cannabis sativa. Δ-9-tetrahydrocannabinol (THC) is the major psychoactive constituent of cannabis, while cannabidiol (CBD) is the major non-psychoactive constituent. THC is a partial agonist at CB1 and CB2 receptors, while CBD at high levels is an antagonist CB1 and CB2.

CB1 is abundantly expressed in the brain, and CB2 is expressed on immune cells (expression of CB2 on neurons remains controversial). The brain also produces endogenous cannabis-like substances (endocannabinoids) that bind and activate the CB1/CB2 receptors.

There is tremendous interest in harnessing the therapeutic potential of plant-derived and synthetic cannabinoids.

This Editorial provides an overview of diseases that may be treated by cannabinoids.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4948749/

Effective treatment of spasticity using dronabinol in pediatric palliative care.

“Cannabis extracts have a wide therapeutic potential but in many countries they have not been approved for treatment in children so far.

We conducted an open, uncontrolled, retrospective study on the administration of dronabinol to determine the value, efficacy, and safety of cannabis-based medicines in the treatment of refractory spasticity in pediatric palliative care.

Sixteen children, adolescents and young adults having complex neurological conditions with spasticity (aged 1.3-26.6 years, median 12.7 years) were treated with dronabinol by our specialized pediatric palliative care team between 01.12.2010 and 30.04.2015 in a home-care setting. Therapeutic efficacy and side effects were closely monitored.

RESULTS:

Drops of the 2.5% oily tetrahydrocannabinol solution (dronabinol) were administered. A promising therapeutic effect was seen, mostly due to abolishment or marked improvement of severe, treatment resistant spasticity (n = 12). In two cases the effect could not be determined, two patients did not benefit. The median duration of treatment was 181 days (range 23-1429 days). Dosages to obtain a therapeutic effect varied from 0.08 to 1.0 mg/kg/d with a median of 0.33 mg/kg/d in patients with a documented therapeutic effect. When administered as an escalating dosage scheme, side effects were rare and only consisted in vomiting and restlessness (one patient each).

No serious and enduring side effects occurred even in young children and/or over a longer period of time.

CONCLUSIONS:

In the majority of pediatric palliative patients the treatment with dronabinol showed promising effects in treatment resistant spasticity.”

http://www.ncbi.nlm.nih.gov/pubmed/27506815

Cannabinoids As Potential Treatment for Chemotherapy-Induced Nausea and Vomiting.

“Despite the advent of classic anti-emetics, chemotherapy-induced nausea is still problematic, with vomiting being somewhat better managed in the clinic.

If post-treatment nausea and vomiting are not properly controlled, anticipatory nausea-a conditioned response to the contextual cues associated with illness-inducing chemotherapy-can develop. Once it develops, anticipatory nausea is refractive to current anti-emetics, highlighting the need for alternative treatment options.

One of the first documented medicinal uses of Δ(9)-tetrahydrocannabinol (Δ(9)-THC) was for the treatment of chemotherapy-induced nausea and vomiting (CINV), and recent evidence is accumulating to suggest a role for the endocannabinoid system in modulating CINV.

Here, we review studies assessing the therapeutic potential of cannabinoids and manipulations of the endocannabinoid system in human patients and pre-clinical animal models of nausea and vomiting.”

http://www.ncbi.nlm.nih.gov/pubmed/27507945

Endocannabinoid system: Role in depression, reward and pain control (Review).

 

“Depression and pain co-exist in almost 80% of patients and are associated with impaired health-related quality of life, often contributing to high mortality. However, the majority of patients who suffer from the comorbid depression and pain are not responsive to pharmacological treatments that address either pain or depression, making this comorbidity disorder a heavy burden on patients and society.

In ancient times, this depression-pain comorbidity was treated using extracts of the Cannabis sativa plant, known now as marijuana and the mode of action of Δ9‑tetrahydrocannabinol, the active cannabinoid ingredient of marijuana, has only recently become known, with the identification of cannabinoidreceptor type 1 (CB1) and CB2.

Subsequent investigations led to the identification of endocannabinoids, anandamide and 2-arachidonoylglycerol, which exert cannabinomimetic effects through the CB1 and CB2 receptors, which are located on presynaptic membranes in the central nervous system and in peripheral tissues, respectively.

These endocannabinoids are produced from membrane lipids and are lipohilic molecules that are synthesized on demand and are eliminated rapidly after their usage by hydrolyzing enzymes.

Clinical studies revealed altered endocannabinoid signaling in patients with chronic pain.

Considerable evidence suggested the involvement of the endocannabinoid system in eliciting potent effects on neurotransmission, neuroendocrine, and inflammatory processes, which are known to be deranged in depression and chronic pain.

Several synthetic cannabinomimetic drugs are being developed to treat pain and depression. However, the precise mode of action of endocannabinoids on different targets in the body and whether their effects on pain and depression follow the same or different pathways, remains to be determined.”

http://www.ncbi.nlm.nih.gov/pubmed/27484193