The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin

  “Cannabis sativa is the source of a unique set of compounds known collectively as plant cannabinoids or phytocannabinoids. This review focuses on the manner with which three of these compounds, (−)-trans9-tetrahydrocannabinol (Δ9-THC), (−)-cannabidiol (CBD) and (−)-trans9-tetrahydrocannabivarin (Δ9-THCV), interact with cannabinoid CB1 and CB2 receptors. Δ9-THC, the main psychotropic constituent of cannabis, is a CB1 and CB2 receptor partial agonist and in line with classical pharmacology, the responses it elicits appear to be strongly influenced both by the expression level and signalling efficiency of cannabinoid receptors and by ongoing endogenous cannabinoid release. CBD displays unexpectedly high potency as an antagonist of CB1/CB2 receptor agonists in CB1– and CB2-expressing cells or tissues, the manner with which it interacts with CB2 receptors providing a possible explanation for its ability to inhibit evoked immune cell migration. Δ9-THCV behaves as a potent CB2 receptor partial agonist in vitro. In contrast, it antagonizes cannabinoid receptor agonists in CB1-expressing tissues. This it does with relatively high potency and in a manner that is both tissue and ligand dependent. Δ9-THCV also interacts with CB1 receptors when administered in vivo, behaving either as a CB1 antagonist or, at higher doses, as a CB1 receptor agonist. Brief mention is also made in this review, first of the production by Δ9-THC of pharmacodynamic tolerance, second of current knowledge about the extent to which Δ9-THC, CBD and Δ9-THCV interact with pharmacological targets other than CB1 or CB2 receptors, and third of actual and potential therapeutic applications for each of these cannabinoids.”

“…cannabis is a source not only of Δ9-THC, CBD and Δ9-THCV but also of at least 67 other phytocannabinoids and as such can be regarded as a natural library of unique compounds. The therapeutic potential of many of these ligands still remains largely unexplored prompting a need for further preclinical and clinical research directed at establishing whether phytocannabinoids are indeed ‘a neglected pharmacological treasure trove’. As well as leading to a more complete exploitation of Δ9-THC and CBD as therapeutic agents and establishing the clinical potential of Δ9-THCV more clearly, such research should help to identify any other phytocannabinoids that have therapeutic applications per se or that constitute either prodrugs from which semisynthetic medicines might be manufactured or lead compounds from which wholly synthetic medicines might be developed.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219532/

Naturally occurring and related synthetic cannabinoids and their potential therapeutic applications.

Abstract

“Naturally occurring cannabinoids (phytocannabinoids) are biosynthetically related terpenophenolic compounds uniquely produced by the highly variable plant, Cannabis sativa L. Natural and synthetic cannabinoids have been extensively studied since the discovery that the psychotropic effects of cannabis are mainly due to Delta(9)-THC. However, cannabinoids exert pharmacological actions on other biological systems such as the cardiovascular, immune and endocrine systems. Most of these effects have been attributed to the ability of these compounds to interact with the cannabinoid CB1 and CB2 receptors. The FDA approval of Marinol, a product containing synthetic Delta(9)-THC (dronabinol), in 1985 for the control of nausea and vomiting in cancer patients receiving chemotherapy, and in 1992 as an appetite stimulant for AIDS patients, has further intensified the research interest in these compounds. This article reviews patents (2003-2007) that describe methods for isolation of cannabinoids from cannabis, chemical and chromatographic methods for their purification, synthesis, and potential therapeutic applications of these compounds.”

http://www.ncbi.nlm.nih.gov/pubmed/19519560

A molecular basis of the therapeutic and psychoactive properties of cannabis (delta9-tetrahydrocannabinol).

Abstract

“All of the therapeutic properties of marihuana (analgesic, antiemetic, appetite stimulant, antiglaucoma) have been duplicated by the tetrahydrocannabinol (THC) molecule or its synthetic derivatives. Today, the molecular mechanisms of action of these compounds have led to a general understanding of the pharmacological effects of marihuana and of its therapeutic properties. These mechanisms involve the specific binding of THC to the 7-transmembrane (7TM) domain G protein-linked receptor, a molecular switch which regulates signal transduction in the cell membrane. The natural ligand of the 7TM receptor is an eicosanoid, arachidonylethanolamide (AEA), generated in the membrane and derived from arachidonic acid. THC acts as a substitute ligand to the 7TM receptor site of AEA. THC would deregulate the physiological function of the 7TM receptor and of its ligand AEA. As a result, the therapeutic effects of the drug may not be separated from its adverse psychoactive and cardiovascular effects. The binding of THC to the 7TM receptor site of AEA induces allosteric changes in the receptor sites of neurotransmitter and opiates resulting in variable interactions and pharmacological responses. The pharmacokinetics of THC with its prolonged storage in fat and its slow release result in variable and delayed pharmacological response, which precludes precise dosing to achieve timely therapeutic effects. The experimental use of THC and of its synthetic analogues, agonists, and antagonists has provided novel information in the nature of molecular signaling in the cell membrane. As a result, the relationships between allosteric receptor responsiveness, molecular configuration of proteins, and physiological regulation of cellular and organ function may be further investigated.”

http://www.ncbi.nlm.nih.gov/pubmed/12188105

Marijuana May Fight Lung Tumors – FoxNews

   “…the active ingredient in marijuana may help combat lung cancer, new research suggests.

In lab and mouse studies, the compound, known as THC, cut lung tumor growth in half and helped prevent the cancer from spreading, says Anju Preet, PhD, a Harvard University researcher in Boston who tested the chemical. 

While a lot more work needs to be done, “the results suggest THC has therapeutic potential,” she tells WebMD. 

Moreover, other early research suggests the cannabis compound could help fight brain, prostate, and skin cancers as well, Preet says.”

Read more: http://www.foxnews.com/story/0,2933,266715,00.html

Read more: http://www.foxnews.com/story/0,2933,266715,00.html#ixzz2C1POR7Ap

Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1.

Cover image

“Although cannabinoids exhibit a broad variety of anticarcinogenic effects, their potential use in cancer therapy is limited by their psychoactive effects. Here we evaluated the impact of cannabidiol, a plant-derived non-psychoactive cannabinoid, on cancer cell invasion. Using Matrigel invasion assays we found a cannabidiol-driven impaired invasion of human cervical cancer (HeLa, C33A) and human lung cancer cells (A549) that was reversed by antagonists to both CB(1) and CB(2) receptors as well as to transient receptor potential vanilloid 1 (TRPV1). The decrease of invasion by cannabidiol appeared concomitantly with upregulation of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). Knockdown of cannabidiol-induced TIMP-1 expression by siRNA led to a reversal of the cannabidiol-elicited decrease in tumor cell invasiveness, implying a causal link between the TIMP-1-upregulating and anti-invasive action of cannabidiol. P38 and p42/44 mitogen-activated protein kinases were identified as upstream targets conferring TIMP-1 induction and subsequent decreased invasiveness. Additionally, in vivo studies in thymic-aplastic nude mice revealed a significant inhibition of A549 lung metastasis in cannabidiol-treated animals as compared to vehicle-treated controls.

Altogether, these findings provide a novel mechanism underlying the anti-invasive action of cannabidiol and imply its use as a therapeutic option for the treatment of highly invasive cancers.”  http://www.ncbi.nlm.nih.gov/pubmed/19914218

http://www.sciencedirect.com/science/article/pii/S000629520900971X

Cannabinoid Receptors, CB1 and CB2, as Novel Targets for Inhibition of Non-Small Cell Lung Cancer Growth and Metastasis

“Cannabinoid receptors are expressed in human lung cancers”

 

  “Recently, CB1 and CB2 have been shown to be overexpressed on tumor cells compared to normal cells in various types of cancers, such as breast and liver, and therefore could be used as novel targets for cancer. In addition, several cannabinoids, including THC and cannabidiol, synthetic cannabinoid-agonists JWH-133, Win55,212-2, were shown to inhibit tumor growth and progression of several types of cancers, including glioma, glioblastoma multiforme, breast, prostate, colon carcinomas, leukemia and lymphoid tumors.”

“There are three general types of cannabinoids: phytocannabinoids, THC and cannabidiol, are derived from plants; endogenous cannabinoids, 2AG and AEA, which are produced inside the body; and synthetic cannabinoids, JWH-133/JWH-015, CP-55 and Win55,212-2.”

“Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths worldwide; however, only limited therapeutic treatments are available. Hence, we investigated the role of cannabinoid receptors, CB1 and CB2, as novel therapeutic targets against NSCLC…”

“These results suggest that CB1 and CB2 could be used as novel therapeutic targets against NSCLC.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025486/

 

Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1.

JNCI: Journal of the National Cancer Institute

“Cannabinoids, in addition to having palliative benefits in cancer therapy, have been associated with anticarcinogenic effects. Although the antiproliferative activities of cannabinoids have been intensively investigated, little is known about their effects on tumor invasion.”

“Increased expression of TIMP-1 mediates an anti-invasive effect of cannabinoids. Cannabinoids may therefore offer a therapeutic option in the treatment of highly invasive cancers.”

“There is considerable evidence to suggest an important role for cannabinoids in conferring anticarcinogenic activities. In this study, we identified TIMP-1 as a mediator of the anti-invasive actions of MA, a hydrolysis-stable analog of the endocannabinoid anandamide, and THC, a plant-derived cannabinoid.”

“In conclusion, our results suggest that there exists a signaling pathway by which the binding of cannabinoids to specific receptors leads via intracellular MAPK activation to induction of TIMP-1 expression and subsequent inhibition of tumor cell invasion. To our knowledge, this is the first report of TIMP-1–dependent anti-invasive effects of cannabinoids.”

http://jnci.oxfordjournals.org/content/100/1/59.long

Cannabis and endocannabinoid modulators: Therapeutic promises and challenges.

   “The discovery that botanical cannabinoids such as delta-9 tetrahydrocannabinol exert some of their effect through binding specific cannabinoid receptor sites has led to the discovery of an endocannabinoid signaling system, which in turn has spurred research into the mechanisms of action and addiction potential of cannabis on the one hand, while opening the possibility of developing novel therapeutic agents on the other. This paper reviews current understanding of CB1, CB2, and other possible cannabinoid receptors, their arachidonic acid derived ligands (e.g. anandamide; 2 arachidonoyl glycerol), and their possible physiological roles. CB1 is heavily represented in the central nervous system, but is found in other tissues as well; CB2 tends to be localized to immune cells. Activation of the endocannabinoid system can result in enhanced or dampened activity in various neural circuits depending on their own state of activation. This suggests that one function of the endocannabinoid system may be to maintain steady state. The therapeutic action of botanical cannabis or of synthetic molecules that are agonists, antagonists, or which may otherwise modify endocannabinoid metabolism and activity indicates they may have promise as neuroprotectants, and may be of value in the treatment of certain types of pain, epilepsy, spasticity, eating disorders, inflammation, and possibly blood pressure control.”

“Marijuana and cannabinoids as medicine”

“Although references to potential medicinal properties of cannabis date to ancient times, and despite cannabis being included as a medication in Western pharmacopeias from the nineteenth through the early twentieth centuries, there is still no body of reliable information on possible indications or efficacy. In part, slow progress can be attributed to difficulties in identifying the active ingredients in cannabis; THC was not actually characterized and identified as the main psychoactive substance until 1965. The chemical properties of the cannabinoids, for example their virtual insolubility in water, and the fact that they consist of oily liquids at room temperature has posed further challenges in formulation and administration. Increased governmental concerns about the abuse potential of marijuana and hashish also created a regulatory climate in many Western countries that emphasized the negative properties of these substances and absence of any documented medicinal properties, thus discouraging research into therapeutics.”

“Cultural and attitude changes in the latter half of the twentieth century in many Western countries resulted in large groups of ‘mainstream’ adults and adolescents experimenting with marijuana. The scarcity of obvious acute serious toxic effects, and lack of consistent information on longer-term adverse effects has lead to more recent attitudinal changes in many Western societies that have re-opened the possibility of use of cannabis as a medication.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2544377/

CB₁-independent mechanisms of Δ⁹-THCV, AM251 and SR141716 (rimonabant).

Abstract

“WHAT IS KNOWN AND OBJECTIVE:

The potential beneficial therapeutic effects of cannabinoid CB₁ receptor antagonists or partial agonists have driven drug discovery and development efforts and have led to clinical candidates. It is generally assumed that these compounds are CB₁ ‘selective’ and produce their effects exclusively via CB₁ receptors.

METHODS:

A literature search was conducted of preclinical publications containing information about non-CB₁ receptor pharmacology of these agents. The information was summarized and evaluated from the perspective of contribution to a fuller understanding of this aspect of these compounds.

RESULTS AND DISCUSSION:

A number of recent studies have revealed that these compounds have CB₁-independent pharmacological actions. We highlight the evidence regarding effects produced in cells lacking CB₁ receptors, effects on neuronal membranes from CB₁ receptor-deficient mutant KO ‘knockout’ mice and affinity for μ-opioid receptors.

WHAT IS NEW AND CONCLUSION:

CB₁ ‘selective’ antagonists and partial agonists have been studied for their anorexigenic and other potential therapeutic uses. An awareness of CB₁-independent mechanism(s) of these agents might contribute to a better understanding of the pharmacologic and toxicologic profiles of these agents.”

http://www.ncbi.nlm.nih.gov/pubmed/21740450

Nabilone. A preliminary review of its pharmacological properties and therapeutic use.

Abstract

“Nabilone is a new orally active cannabinoid for the treatment of severe gastrointestinal toxicity associated with cancer chemotherapy. The pharmacological profile of nabilone suggests that it acts primarily by preventing emesis controlled by the medulla oblongata, although its secondary mild anxiolytic activity may contribute to the overall efficacy. Nabilone 2mg twice daily starting 12 hours prior to, and continued for the duration of, chemotherapy produces significant reduction in the severity and duration of nausea and the frequency of vomiting in about 50 to 70% of patients with severe symptoms refractory to conventional therapy. Nabilone has proven to be more effective in controlling symptoms and preferred by more patients than prochlorperazine 10mg 2 to 4 times daily in a limited number of studies, despite a higher incidence of side effects. Comparative trials against other new antiemetic agents, such as high dose metoclopramide, and use of nabilone in combination with other antiemetics remain to be undertaken. The incidence of side effects is high with nabilone; drowsiness, dizziness and/or vertigo occur in 60 to 70% of patients, but rarely lead to drug withdrawal, although more troublesome effects, such as postural hypotension, ataxia, vision disturbance and toxic psychoses, may cause discontinuation of therapy. Thus, nabilone offers an effective alternative to the treatment options available in a difficult therapeutic area – those patients with severe gastrointestinal side effects from cancer chemotherapy who are refractory to conventional therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/2863127