“Symptom management in older adults, including pain and distressing non-pain symptoms, can be challenging. Medications can cause side effects that worsen quality of life or create other symptoms, and polypharmacy itself can be detrimental in older adults.
Cannabinoids may offer a way of managing selected symptoms with fewer side effects.
Medical marijuana is an important area of study for older adults because of the side effects of other medications. It is also important for Baby Boomers, who are likely to have more experience with marijuana than older adults of previous generations. Therefore, geriatricians should understand medical marijuana’s clinical indications, adverse effects, and legal context.
This article reviews the evidence regarding indications for and risks of medical marijuana use in older adults.”
https://www.ncbi.nlm.nih.gov/pubmed/29668039
https://onlinelibrary.wiley.com/doi/abs/10.1111/jgs.15346
“Our study finds that the therapeutic use of cannabis is safe and efficacious in the elderly population.” https://www.ncbi.nlm.nih.gov/pubmed/29398248
Tag Archives: therapeutic
INSIGHT ON THE IMPACT OF ENDOCANNABINOID SYSTEM IN CANCER: A REVIEW.
“In the last decades, the endocannabinoid system has attracted a great interest in medicine and cancer disease is probably one of its most promising therapeutic areas.
On the one hand, endocannabinoid system expression has been found altered in numerous types of tumours compared to healthy tissue, and this aberrant expression has been related to cancer prognosis and disease outcome, suggesting a role of this system in tumour growth and progression that depends on cancer type.
On the other hand, it has been reported that cannabinoids exert an anticancer activity by inhibiting the proliferation, migration and/or invasion of cancer cells; and also tumour angiogenesis.
The endocannabinoid system may be considered as a new therapeutic target, although further studies to fully establish the effect of cannabinoids on tumour progression remain necessary.”
https://www.ncbi.nlm.nih.gov/pubmed/29663308
Cannabinoid Type 1 Receptors are Upregulated During Acute Activation of Brown Adipose Tissue.
“Activating brown adipose tissue (BAT) could provide a potential approach for the treatment of obesity and metabolic disease in humans.
Obesity is associated with up-regulation of the endocannabinoid system, and blocking the cannabinoid type 1 receptor (CB1R) has been shown to cause weight loss and decrease cardiometabolic risk factors. These effects may partly be mediated via increased BAT metabolism, since there is evidence that CB1R antagonism activates BAT in rodents.
To investigate the significance of CB1R in BAT function, we quantified the density of CB1R in human and rodent BAT using the positron emission tomography (PET) radioligand [18F]FMPEP-d2 , and in parallel measured BAT activation with the glucose analogue [18F]FDG. Activation by cold exposure markedly increased CB1R density and glucose uptake in BAT of lean men. Similarly, β3-receptor agonism increased CB1R density in BAT of rats.
In contrast, overweight men with reduced BAT activity exhibited decreased CB1R in BAT, reflecting impaired endocannabinoid regulation. Image-guided biopsies confirmed CB1R mRNA expression in human BAT. Furthermore, CB1R blockade increased glucose uptake and lipolysis of brown adipocytes.
Our results highlight that CB1Rs are significant for human BAT activity, and the CB1R provide a novel therapeutic target for BAT activation in humans.”

“The trigeminovascular system (TS) activation and the vasoactive release from trigeminal endings, in proximity of the meningeal vessels, are considered two of the main effector mechanisms of migraine attacks. Several other structures and mediators are involved, however, both upstream and alongside the TS.
Among these, the endocannabinoid system (ES) has recently attracted considerable attention. Experimental and clinical data suggest indeed a link between dysregulation of this signaling complex and migraine headache.
Clinical observations, in particular, show that the levels of anandamide (AEA)-one of the two primary endocannabinoid lipids-are reduced in cerebrospinal fluid and plasma of patients with chronic migraine (CM), and that this reduction is associated with pain facilitation in the spinal cord.
AEA is produced on demand during inflammatory conditions and exerts most of its effects by acting on cannabinoid (CB) receptors. AEA is rapidly degraded by fatty acid amide hydrolase (FAAH) enzyme and its levels can be modulated in the peripheral and central nervous system (CNS) by FAAH inhibitors.
Inhibition of AEA degradation via FAAH is a promising therapeutic target for migraine pain, since it is presumably associated to an increased availability of the endocannabinoid, specifically at the site where its formation is stimulated (e.g., trigeminal ganglion and/or meninges), thus prolonging its action.”