The Potential Role of Cannabinoids in Modulating Serotonergic Signaling by Their Influence on Tryptophan Metabolism.

pharmaceuticals-logo

“Phytocannabinoids present in Cannabis plants are well known to exert potent anti-inflammatory and immunomodulatory effects.

Previously, we have demonstrated that the psychoactive D9-tetrahydrocannabinol (THC) and the non-psychotropic cannabidiol (CBD) modulate mitogen-induced Th1-type immune responses in peripheral blood mononuclear cells (PBMC).

The suppressive effect of both cannabinoids on mitogen-induced tryptophan degradation mediated by indoleamine-2,3-dioxygenase (IDO), suggests an additional mechanism by which antidepressive effects of cannabinoids might be linked to the serotonergic system.

Here, we will review the role of tryptophan metabolism in the course of cell mediated immune responses and the relevance of cannabinoids in serotonergic signaling.

We conclude that in particular the non-psychotropic CBD might be useful for the treatment of mood disorders in patients with inflammatory diseases, since this cannabinoid seems to be safe and its effects on activation-induced tryptophan degradation by CBD were more potent as compared to THC.”

Brain CB₂ Receptors: Implications for Neuropsychiatric Disorders.

pharmaceuticals-logo

“Although previously thought of as the peripheral cannabinoid receptor, it is now accepted that the CB₂ receptor is expressed in the central nervous system on microglia, astrocytes and subpopulations of neurons.

Expression of the CB₂ receptor in the brain is significantly lower than that of the CB₁ receptor. Conflicting findings have been reported on the neurological effects of pharmacological agents targeting the CB₂ receptor under normal conditions.

Under inflammatory conditions, CB₂ receptor expression in the brain is enhanced and CB2 receptor agonists exhibit potent anti-inflammatory effects. These findings have prompted research into the CB₂ receptor as a possible target for the treatment of neuroinflammatory and neurodegenerative disorders.

Neuroinflammatory alterations are also associated with neuropsychiatric disorders and polymorphisms in the CB₂ gene have been reported in depression, eating disorders and schizophrenia. This review will examine the evidence to date for a role of brain CB₂ receptors in neuropsychiatric disorders.”

Cannabidiol as a new treatment for drug-resistant epilepsy in tuberous sclerosis complex.

Image result for Epilepsia.

“Tuberous sclerosis complex (TSC) is an autosomal-dominant genetic disorder with highly variable expression.

The most common neurologic manifestation of TSC is epilepsy, which affects approximately 85% of patients, 63% of whom develop treatment-resistant epilepsy.

Herein, we evaluate the efficacy, safety, and tolerability of cannabidiol (CBD), a nonpsychoactive compound derived from the marijuana plant, as an adjunct to current antiepileptic drugs in patients with refractory seizures in the setting of TSC.

Although double-blind, placebo-controlled trials are still necessary, these findings suggest that cannabidiol may be an effective and well-tolerated treatment option for patients with refractory seizures in TSC.”

https://www.ncbi.nlm.nih.gov/pubmed/27696387

Vascular Dysfunction in a Transgenic Model of Alzheimer’s Disease: Effects of CB1R and CB2R Cannabinoid Agonists.

Image result for Front Neurosci.

“There is evidence of altered vascular function, including cerebrovascular, in Alzheimer’s disease (AD) and transgenic models of the disease.

Indeed vasoconstrictor responses are increased, while vasodilation is reduced in both conditions. β-Amyloid (Aβ) appears to be responsible, at least in part, of alterations in vascular function.

Cannabinoids, neuroprotective and anti-inflammatory agents, induce vasodilation both in vivo and in vitro.

We have demonstrated a beneficial effect of cannabinoids in models of AD by preventing glial activation.

In this work we have studied the effects of these compounds on vessel density in amyloid precursor protein (APP) transgenic mice, line 2576, and on altered vascular responses in aortae isolated ring.

In summary, we have confirmed and extended the existence of altered vascular responses in Tg APP mice.

Moreover, our results suggest that treatment with cannabinoids may ameliorate the vascular responses in AD-type pathology.”

Turning Down the Thermostat: Modulating the Endocannabinoid System in Ocular Inflammation and Pain.

Image result for Frontiers in Pharmacology

“The endocannabinoid system (ECS) has emerged as an important regulator of both physiological and pathological processes. Notably, this endogenous system plays a key role in the modulation of pain and inflammation in a number of tissues.

The components of the ECS, including endocannabinoids, their cognate enzymes and cannabinoid receptors, are localized in the eye, and evidence indicates that ECS modulation plays a role in ocular disease states.

Of these diseases, ocular inflammation presents a significant medical problem, given that current clinical treatments can be ineffective or are associated with intolerable side-effects. Furthermore, a prominent comorbidity of ocular inflammation is pain, including neuropathic pain, for which therapeutic options remain limited.

Recent evidence supports the use of drugs targeting the ECS for the treatment of ocular inflammation and pain in animal models; however, the potential for therapeutic use of cannabinoid drugs in the eye has not been thoroughly investigated at this time.

This review will highlight evidence from experimental studies identifying components of the ocular ECS and discuss the functional role of the ECS during different ocular inflammatory disease states, including uveitis and corneal keratitis.

Candidate ECS targeted therapies will be discussed, drawing on experimental results obtained from both ocular and non-ocular tissue(s), together with their potential application for the treatment of ocular inflammation and pain.”

https://www.ncbi.nlm.nih.gov/pubmed/27695415

β-caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties.

 

Cancer Biology & Medicine

“Natural bicyclic sesquiterpenes, β-caryophyllene (BCP) and β-caryophyllene oxide (BCPO), are present in a large number of plants worldwide.

Both BCP and BCPO (BCP(O)) possess significant anticancer activities, affecting growth and proliferation of numerous cancer cells.

In addition, both compounds potentiate the classical drug efficacy by augmenting their concentrations inside the cells.

BCP is a phytocannabinoid with strong affinity to cannabinoid receptor type 2 (CB2 ), but not cannabinoid receptor type 1 (CB1 ). In opposite, BCP oxidation derivative, BCPO, does not exhibit CB1/2 binding, thus the mechanism of its action is not related to endocannabinoid system (ECS) machinery.

It is known that BCPO alters several key pathways for cancer development, such as mitogen-activated protein kinase (MAPK), PI3K/AKT/mTOR/S6K1 and STAT3 pathways. In addition, treatment with this compound reduces the expression of procancer genes/proteins, while increases the levels of those with proapoptotic properties.

The selective activation of CB2 may be considered a novel strategy in pain treatment, devoid of psychoactive side effects associated with CB1 stimulation. Thus, BCP as selective CB2 activator may be taken into account as potential natural analgesic drug.

Moreover, due to the fact that chronic pain is often an element of cancer disease, the double activity of BCP, anticancer and analgesic, as well as its beneficial influence on the efficacy of classical chemotherapeutics, is particularly valuable in oncology.

This review is focused on anticancer and analgesic activities of BCP and BCPO, the mechanisms of their actions, and potential therapeutic utility.”

https://www.ncbi.nlm.nih.gov/pubmed/27696789

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

Cannabidiol: a potential treatment for post Ebola Syndrome?

Image result for international journal of infectious diseases

“Patients recovered from Ebola virus infection may experience short- and long-term physical, neuropsychological and social sequelae, including arthralgia, musculoskeletal pain, ophthalmic inflammation, auditory problems, fatigue, confusion, insomnia, short-term memory impairment, anxiety, depression and anorexia, all lasting from 2 weeks to more than 2 years.

Currently there are no treatments for post Ebola sequelae.

We hypothesize that cannabidiol (CBD) may attenuate some of these post Ebola sequelae, several of which have been postulated to result from inflammation and/or an autoimmune response.

CBD has anti-inflammatory actions in various animal models.

Clinical studies have shown that oral administration of CBD, compared to placebo, significantly reduces anxiety, has antinociceptive and anticonvulsant actions, and may be therapeutic for insomnia.

Overall, CBD has a number of pharmacological effects that may significantly improve the mental and somatic health of patients suffering from post Ebola sequelae.

In humans, CBD, at therapeutic doses, does not: 1) elicit dependence or tolerance; 2) significantly alter heart rate or blood pressure; 3) affect gastrointestinal transit; 4) produce significant cognitive or psychomotor impairments. Mild sedation and nausea are the most commonly reported adverse effects associated with CBD.

CBD, based on its pharmacological effects and favorable safety profile, should be considered as a treatment for individuals with post Ebola sequelae.”

https://www.ncbi.nlm.nih.gov/pubmed/27686726

Neuroprotective Effects of Cannabidiol In Hypoxic Ischemic Insult: The Therapeutic Window In Newborn Mice.

Image result for CNS Neurol Disord Drug Targets

“A relevant therapeutic time window (TTW) is an important criterion for considering the clinical relevance of a substance preventing newborn hypoxic-ischemic (HI) brain damage.

OBJECTIVE:

to test the TTW of the neuroprotective effects of cannabidol (CBD), a non-psychoactive cannabinoid in a model of newborn HI brain damage.

RESULTS:

CBD administered up to 18 h after HI reduced IHVL and neuropathological score by 60%, TUNEL+ count by 90% and astrocyte damage by 50%. In addition, CBD blunted the HI-induced increase in microglial population. When CBD administration was delayed 24 h, however, the neuroprotective effect was lost in terms of IHVL, apoptosis or astrogliosis reduction.

CONCLUSION:

CBD shows a TTW of 18 h when administered to HI newborn mice, which represents a broader TTW than reported for other neuroprotective treatments including hypothermia.”

https://www.ncbi.nlm.nih.gov/pubmed/27686886

THC (Δ9-Tetrahydrocannabinol) Exerts Neuroprotective Effect in Glutamate-affected Murine Primary Mesencephalic Cultures Through Restoring Mitochondrial Membrane Potential and Anti-apoptosis Involving CB1 Receptor-dependent Mechanism.

Phytotherapy Research

“Aging-related neurodegenerative diseases, such as Parkinson’s disease (PD) or related disorders, are an increasing societal and economic burden worldwide.

Δ9-Tetrahydrocannabinol (THC) is discussed as a neuroprotective agent in several in vitro and in vivo models of brain injury. However, the mechanisms by which THC exhibits neuroprotective properties are not completely understood.

In the present study, we investigated neuroprotective mechanisms of THC in glutamate-induced neurotoxicity in primary murine mesencephalic cultures, as a culture model for PD.

THC protected dopaminergic neurons and other cell types of primary dissociated cultures from glutamate-induced neurotoxicity.

Moreover, THC significantly counteracted the glutamate-induced mitochondrial membrane depolarization and apoptosis.

In conclusion, THC exerts anti-apoptotic and restores mitochondrial membrane potential via a mechanism dependent on CB1 receptor.

It strengthens the fact that THC has a benefit on degenerative cellular processes occurring, among others, in PD and other neurodegenerative diseases by slowing down the progression of neuronal cell death.”

https://www.ncbi.nlm.nih.gov/pubmed/27654887

http://onlinelibrary.wiley.com/wol1/doi/10.1002/ptr.5712/full

Targeting anandamide metabolism rescues core and associated autistic-like symptoms in rats prenatally exposed to valproic acid.

Image result for Transl Psychiatry.

“Autism spectrum disorders (ASD) are characterized by altered sociability, compromised communication and stereotyped/repetitive behaviors, for which no specific treatments are currently available. Prenatal exposure to valproic acid (VPA) is a known, although still underestimated, environmental risk factor for ASD.

Altered endocannabinoid activity has been observed in autistic patients, and endocannabinoids are known to modulate behavioral traits that are typically affected in ASD. On this basis, we tested the hypothesis that changes in the endocannabinoid tone contribute to the altered phenotype induced by prenatal VPA exposure in rats, with focus on behavioral features that resemble the core and associated symptoms of ASD.

In the course of development, VPA-exposed rats showed early deficits in social communication and discrimination, compromised sociability and social play behavior, stereotypies and increased anxiety, thus providing preclinical proof of the long-lasting deleterious effects induced by prenatal VPA exposure. At the neurochemical level, VPA-exposed rats displayed altered phosphorylation of CB1 cannabinoidreceptors in different brain areas, associated with changes in anandamide metabolism from infancy to adulthood.

Interestingly, enhancing anandamide signaling through inhibition of its degradation rescued the behavioral deficits displayed by VPA-exposed rats at infancy, adolescence and adulthood.

This study therefore shows that abnormalities in anandamide activity may underlie the deleterious impact of environmental risk factors on ASD-relevant behaviors and that the endocannabinoid system may represent a therapeutic target for the core and associated symptoms displayed by autistic patients.”