The therapeutic potential of the phytocannabinoid cannabidiol for Alzheimer’s disease.

“Alzheimer’s disease (AD) is the most common neurodegenerative disorder, characterized by progressive loss of cognition. Over 35 million individuals currently have AD worldwide. Unfortunately, current therapies are limited to very modest symptomatic relief.

The brains of AD patients are characterized by the deposition of amyloid-β and hyperphosphorylated forms of tau protein. AD brains also show neurodegeneration and high levels of oxidative stress and inflammation.

The phytocannabinoid cannabidiol (CBD) possesses neuroprotective, antioxidant and anti-inflammatory properties and reduces amyloid-β production and tau hyperphosphorylation in vitro.

CBD has also been shown to be effective in vivo making the phytocannabinoid an interesting candidate for novel therapeutic interventions in AD, especially as it lacks psychoactive or cognition-impairing properties.

CBD treatment would be in line with preventative, multimodal drug strategies targeting a combination of pathological symptoms, which might be ideal for AD therapy.

Thus, this review will present a brief introduction to AD biology and current treatment options before outlining comprehensively CBD biology and pharmacology, followed by in-vitro and in-vivo evidence for the therapeutic potential of CBD. We will also discuss the role of the endocannabinioid system in AD before commenting on the potential future of CBD for AD therapy (including safety aspects).”

http://www.ncbi.nlm.nih.gov/pubmed/27471947

Delayed treatment with cannabidiol has a cerebroprotective action via a cannabinoid receptor-independent myeloperoxidase-inhibiting mechanism.

“We examined the neuroprotective mechanism of cannabidiol, non-psychoactive component of marijuana, on the infarction in a 4 h mouse middle cerebral artery (MCA) occlusion model in comparison with Delta(9)-tetrahydrocannabinol (Delta(9)-THC).

Both pre- and post-ischemic treatment with cannabidiol resulted in potent and long-lasting neuroprotection, whereas only pre-ischemic treatment with Delta(9)-THC reduced the infarction.

Unlike Delta(9)-THC, cannabidiol did not affect the excess release of glutamate in the cortex after occlusion.

Cannabidiol suppressed the decrease in cerebral blood flow by the failure of cerebral microcirculation after reperfusion and inhibited MPO activity in neutrophils.

Furthermore, the number of MPO-immunopositive cells was reduced in the ipsilateral hemisphere in cannabidiol-treated group.

Cannabidiol provides potent and long-lasting neuroprotection through an anti-inflammatory CB(1) receptor-independent mechanism, suggesting that cannabidiol will have a palliative action and open new therapeutic possibilities for treating cerebrovascular disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/17437545

The future of cannabinoids as analgesic agents: a pharmacologic, pharmacokinetic, and pharmacodynamic overview.

 

“For thousands of years, physicians and their patients employed cannabis as a therapeutic agent.

Despite this extensive historical usage, in the Western world, cannabis fell into disfavor among medical professionals because the technology available in the 1800s and early 1900s did not permit reliable, standardized preparations to be developed.

However, since the discovery and cloning of cannabinoid receptors (CB1 and CB2) in the 1990s, scientific interest in the area has burgeoned, and the complexities of this fascinating receptor system, and its endogenous ligands, have been actively explored.

Recent studies reveal that cannabinoids have a rich pharmacology and may interact with a number of other receptor systems-as well as with other cannabinoids-to produce potential synergies.

Cannabinoids-endocannabinoids, phytocannabinoids, and synthetic cannabinoids-affect numerous bodily functions and have indicated efficacy of varying degrees in a number of serious medical conditions.

Cannabinoid receptor agonists and/or molecules that affect the modulation of endocannabinoid synthesis, metabolism, and transport may, in the future, offer extremely valuable tools for the treatment of a number of currently intractable disorders.”

 http://www.ncbi.nlm.nih.gov/pubmed/17890938

Blood pressure regulation by endocannabinoids and their receptors

Logo of nihpa

“Cannabinoids and their endogenous and synthetic analogs exert powerful hypotensive and cardiodepressor effects by complex mechanisms involving direct and indirect effects on myocardium and vasculature.

On the one hand, endocannabinoids and cannabinoid receptors have been implicated in the hypotensive state associated with hemorrhagic, endotoxic and cardiogenic shock, and advanced liver cirrhosis.

On the other hand, there is emerging evidence suggesting that the endocannabinergic system plays an important role in the cardiovascular regulation in hypertension.

This review is aimed to discuss the in vivo hypotensive and cardiodepressant effects of cannabinoids mediated by cannabinoid and TRPV1 receptors, and focuses on the novel therapeutical strategies offered by targeting the endocannabinoid system in the treatment of hypertension.

The endocannabinergic system plays an important cardiovascular regulatory role not only in pathophysiological conditions associated with excessive hypotension but also in hypertension.

Thus, the pharmacological manipulation of this system may offer novel therapeutic approaches in a variety of cardiovascular disorders.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2225528/

Endocannabinoid analogues exacerbate marble-burying behavior in mice via TRPV1 receptor.

“Activation of cannabinoid CB(1) receptor is shown to inhibit marble-burying behavior (MBB), a behavioral model for assessing obsessive-compulsive disorder (OCD).

Anandamide, an endogenous agonist at CB(1) receptor also activates the transient receptor potential vanilloid type 1 (TRPV1) channels but at a higher concentration.

Furthermore, anandamide-mediated TRPV1 effects are opposite to that of the CB(1) receptor. Therefore, the present study was carried out to investigate the influence of low and high doses of anandamide on MBB in CB(1) and TRPV1 antagonist pre-treated mice.

Thus, the study indicates the biphasic influence of anandamide on MBB, and chronic administration of capsazepine either alone or with URB597 might be an effective tool in the treatment of OCD.”

http://www.ncbi.nlm.nih.gov/pubmed/22248639

New Study Finds Marijuana To Be Effective Against Depression, Migraine and Anxiety

“Research has suggested that cannabis may be a promising treatment option for a number of different physical and mental health conditions, from post-traumatic stress disorder to chronic pain. A study released this week suggests that depression , anxiety and migraine can be added to that list.

Neuroscientists from the University of Buffalo’s Research Institute on Addictions found that endocannabinoids — chemical compounds in the brain that activate the same receptors as THC, an active compound in marijuana — may be helpful in treating depression, anxiety and migraine that results from chronic stress.

In studies on rats, the researchers found that chronic stress reduced the production of endocannabinoids, which affect our cognition, emotion and behavior, and have been linked to reduced feelings of pain and anxiety, increases in appetite and overall feelings of well-being. The body naturally produces these compounds, which are similar to the chemicals in cannabis. Reduction of endocannabinoid production may be one reason that chronic stress is a major risk factor in the development of depression.

Then, the research team administered marijuana cannabinoids to the rats, finding it to be an effective way to restore endocannabinoid levels in their brains — possibly, thereby, alleviating some symptoms of depression.

“Using compounds derived from cannabis — marijuana — to restore normal endocannabinoid function could potentially help stabilize moods and ease depression,” lead researcher Dr. Samir Haj-Dahmane said in a university press release.

Recent research around marijuana’s effect on symptoms of post-traumatic stress disorder further bolsters the Buffalo neuroscientists’ findings, since both disorders involve the way the brain responds to stress. A study published last year in the journal Neuropsychopharmacology, for instance, found synthetic cannabinoids triggered changes in brain centers associated with traumatic memories in rats, preventing some of the behavioral and physiological symptoms of PTSD. Another study published last year found that patients who smoked cannabis experienced a 75 percent reduction in PTSD symptoms.

However, it’s important to note that the relationship between marijuana and depression  is complex. Some research has suggested that regular and heavy marijuana smokers are at a higher risk for depression, although a causal link between cannabis use and depression has not been established. More studies are needed in order to determine whether, and how, marijuana might be used in a clinical context for patients with depression.”  http://painphysicianjournal.co/2016/06/30/new-study-finds-marijuana-to-be-effective-against-depression-migraine-and-anxiety/

http://painphysicianjournal.co/2016/06/30/new-study-finds-marijuana-to-be-effective-against-depression-migraine-and-anxiety/

New Study Finds Endocannabinoids May Help OCD

OCD and cannabis research

“Obsessive-Compulsive Disorder (OCD) may look different in each affected individual. One person might feel it is necessary to wash their hands constantly while others might feel obligated to count something over and over.

According to the National Institute of Mental Health, OCD is a common disorder in which a person has uncontrollable and reoccurring obsessions and compulsions. Obsessions often cause anxiety in a person, so they feel by doing compulsions, or certain behaviors, they might relieve their anxiety.

There are many treatments and medications used to combat OCD, however research is now showing that endocannabinoids can also play a huge role in OCD. The new study was funded by the The National Institute of Alcohol Abuse and Alcoholism (NIAA) and was conducted with mice. Researchers probed the brain mechanisms that are used when a mouse transitions from goal-directed behavior to habitual behaviors. They then led the mouse to receive food two ways. One way the mice received food was through doing a goal-directed behavior while the second way was through doing a habitual behavior. They then found that by deleting a certain endocannabinoid receptor, mice didn’t form habits.

This discovery led scientists to the conclusion that endocannabinoids, which are natural messengers in our bodies similar to cannabinoids found in cannabis, have a lot to do with how our brains make decisions.

George F. Koob, Ph.D. is the Director of the NIAA stated that their study revealed a mechanism in the brain that controls the transition between goal-directed behaviors and habitual behaviors. He went on to explain, “As we learn more about this mechanism, it could reveal how the brain forms habits and, more specifically, how both endocannabinoids and cannabinoid abuse can influence habitual behavior pathophysiology.”

This conclusion that our bodies natural endocannabinoids and the active ingredients in cannabis can affect memory and decision-making may give scientists a glimpse into new medications and treatments for OCD.” http://ireadculture.com/new-study-finds-endocannabinoids-may-help-ocd/

http://ireadculture.com/new-study-finds-endocannabinoids-may-help-ocd/?utm_content=buffera908b&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer

Refractory trigeminal neuralgia responsive to nabiximols in a patient with multiple sclerosis.

“Nabiximols is a cannabinoid compound approved for the treatment of multiple sclerosis (MS)-related spasticity.

However, additional symptoms, such as pain, urinary urgency and sleep disturbance, may benefit from treatment.

CASE REPORT:

The present report describes a patient with secondary progressive MS and severe lower limbs spasticity who was started on treatment with nabiximols. The patient also suffered from trigeminal neuralgia, which he was not treating due to inefficacy or side effects of all previously tried medications. After nabiximols initiation the patient experienced a marked benefit on trigeminal neuralgia, which completely resolved, while spasticity responded only partially to treatment.

CONCLUSION:

Nabiximols mechanism of action is based on the interaction with CB1 and CB2 receptors, which are expressed by central nervous system neurons and are known to modulate pain among other effects. The present case indicates that nabiximols and other cannabinoids need to be further tested for the treatment of trigeminal neuralgia.”

http://www.ncbi.nlm.nih.gov/pubmed/27456876

“Therapeutic potential of cannabinoids in trigeminal neuralgia. Considering the pronounced antinociceptive effects produced by cannabinoids, they may be a promising therapeutic approach for the clinical management of trigeminal neuralgia.”  http://www.ncbi.nlm.nih.gov/pubmed/15578967

Should we care about sativex-induced neurobehavioral effects? A 6-month follow-up study.

“Sativex® is an exclusive cannabinoid-based drug approved for the treatment of spasticity due to Multiple Sclerosis (MS).

The most common side effects include dizziness, nausea, and somnolence. However, it is still under debate whether the drug could cause negative cognitive effects.

The aim of our study was to investigate the effect of Sativex® on functional and psychological status in cannabis-naïve MS patients.

After the treatment, we did not observe any significant neurobehavioral impairment in all the patients, but one.

Our findings suggest that Sativex® treatment does not significantly affect the cognitive and neurobehavioral functions.”

http://www.ncbi.nlm.nih.gov/pubmed/27460745

Blockade of Cannabinoid CB1 receptor attenuates the acquisition of morphine-induced conditioned place preference along with a downregulation of ERK, CREB phosphorylation, and BDNF expression in the nucleus accumbens and hippocampus.

“Cannabinoid CB1 receptor (CB1R) is highly expressed in the mesocorticolimbic system and associated with drug craving and relapse.

Clinical trials suggest that CB1R antagonists may represent new therapies for drug addiction.

Collectively, these findings demonstrate that 1) Repeated morphine with context exposures but not merely the pharmacological effects of morphine increased CB1R expression both in the NAc and hippocampus. 2) CB1R antagonist mediated blockade of ERK-CREB-BDNF signaling activation in the NAc and hippocampus may be an important mechanism underlying the attenuation of morphine CPP.”

http://www.ncbi.nlm.nih.gov/pubmed/27461790