Inhibition of Human Neutrophil Chemotaxis by Endogenous Cannabinoids and Phytocannabinoids: Evidence for a Site Distinct from CB1 and CB2

   “Here, we show a novel pharmacology for inhibition of human neutrophil migration by endocannabinoids, phytocannabinoids, and related compounds. The endocannabinoids virodhamine and N-arachidonoyl dopamine are potent inhibitors of N-formyl-l-methionyl-l-leucyl-l-phenylalanine-induced migration of human neutrophils…”

   “This study reveals that certain endogenous lipids, phytocannabinoids and related ligands are potent inhibitors of human neutrophil migration, and it implicates a novel pharmacological target distinct from cannabinoid CB1 and CB2 receptors; this target is antagonized by the endogenous compound N-arachidoloyl l-serine. These findings corroborate the emerging clinical and animal model data demonstrating that the nonpsychoactive phytocannabinoid, CBD and its structural analogs are effective in alleviating arthritis. Furthermore, our findings have implications for the potential pharmacological manipulation of elements of the endocannabinoid system for the treatment of various inflammatory conditions.”

http://molpharm.aspetjournals.org/content/73/2/441.long

Fungal biotransformation of cannabinoids: potential for new effective drugs.

Abstract

“Phytocannabinoids from the plant Cannabis sativa induce a variety of physiological and pharmacological responses in living systems, including anti-inflammatory, antinociceptive, anti-ulcer and antitumor activities. The discovery of the cannabinoid receptors CB1 and CB2 led to the development of agonists and antagonists of these receptors for the treatment of a variety of diseases. Nabilone, a synthetic derivative of Delta9-tetrahydrocannabinol (Delta9-THC), which is the main natural psychotropic constituent of C sativa, was approved by the US FDA for the treatment of nausea and as an anti-emetic for patients undergoing chemotherapy. Delta9-THC and related cannabinoids are involved in a variety of signal transduction pathways; thus, reducing or removing the psychotropic effects of these compounds would enhance their therapeutic spectra. Compound synthesis and qualitative SAR studies are time-consuming activities; however, microbes are effectively the most inventive synthetic chemists because of their metabolic plasticity. This review discusses the potential of C sativa mycoflora, which is pathogenic as well as endophytic, to remove the psychotropic effects of Delta9-THC and related cannabinoids, and describes the development of a model system for the rapid and cost-effective commercial production of cannabinoids through fermentation pathways.”

http://www.ncbi.nlm.nih.gov/pubmed/19333876

Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1.

Cover image

“Although cannabinoids exhibit a broad variety of anticarcinogenic effects, their potential use in cancer therapy is limited by their psychoactive effects. Here we evaluated the impact of cannabidiol, a plant-derived non-psychoactive cannabinoid, on cancer cell invasion. Using Matrigel invasion assays we found a cannabidiol-driven impaired invasion of human cervical cancer (HeLa, C33A) and human lung cancer cells (A549) that was reversed by antagonists to both CB(1) and CB(2) receptors as well as to transient receptor potential vanilloid 1 (TRPV1). The decrease of invasion by cannabidiol appeared concomitantly with upregulation of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). Knockdown of cannabidiol-induced TIMP-1 expression by siRNA led to a reversal of the cannabidiol-elicited decrease in tumor cell invasiveness, implying a causal link between the TIMP-1-upregulating and anti-invasive action of cannabidiol. P38 and p42/44 mitogen-activated protein kinases were identified as upstream targets conferring TIMP-1 induction and subsequent decreased invasiveness. Additionally, in vivo studies in thymic-aplastic nude mice revealed a significant inhibition of A549 lung metastasis in cannabidiol-treated animals as compared to vehicle-treated controls.

Altogether, these findings provide a novel mechanism underlying the anti-invasive action of cannabidiol and imply its use as a therapeutic option for the treatment of highly invasive cancers.”  http://www.ncbi.nlm.nih.gov/pubmed/19914218

http://www.sciencedirect.com/science/article/pii/S000629520900971X

Cannabinoid Receptors, CB1 and CB2, as Novel Targets for Inhibition of Non-Small Cell Lung Cancer Growth and Metastasis

“Cannabinoid receptors are expressed in human lung cancers”

 

  “Recently, CB1 and CB2 have been shown to be overexpressed on tumor cells compared to normal cells in various types of cancers, such as breast and liver, and therefore could be used as novel targets for cancer. In addition, several cannabinoids, including THC and cannabidiol, synthetic cannabinoid-agonists JWH-133, Win55,212-2, were shown to inhibit tumor growth and progression of several types of cancers, including glioma, glioblastoma multiforme, breast, prostate, colon carcinomas, leukemia and lymphoid tumors.”

“There are three general types of cannabinoids: phytocannabinoids, THC and cannabidiol, are derived from plants; endogenous cannabinoids, 2AG and AEA, which are produced inside the body; and synthetic cannabinoids, JWH-133/JWH-015, CP-55 and Win55,212-2.”

“Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths worldwide; however, only limited therapeutic treatments are available. Hence, we investigated the role of cannabinoid receptors, CB1 and CB2, as novel therapeutic targets against NSCLC…”

“These results suggest that CB1 and CB2 could be used as novel therapeutic targets against NSCLC.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025486/

 

Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1.

JNCI: Journal of the National Cancer Institute

“Cannabinoids, in addition to having palliative benefits in cancer therapy, have been associated with anticarcinogenic effects. Although the antiproliferative activities of cannabinoids have been intensively investigated, little is known about their effects on tumor invasion.”

“Increased expression of TIMP-1 mediates an anti-invasive effect of cannabinoids. Cannabinoids may therefore offer a therapeutic option in the treatment of highly invasive cancers.”

“There is considerable evidence to suggest an important role for cannabinoids in conferring anticarcinogenic activities. In this study, we identified TIMP-1 as a mediator of the anti-invasive actions of MA, a hydrolysis-stable analog of the endocannabinoid anandamide, and THC, a plant-derived cannabinoid.”

“In conclusion, our results suggest that there exists a signaling pathway by which the binding of cannabinoids to specific receptors leads via intracellular MAPK activation to induction of TIMP-1 expression and subsequent inhibition of tumor cell invasion. To our knowledge, this is the first report of TIMP-1–dependent anti-invasive effects of cannabinoids.”

http://jnci.oxfordjournals.org/content/100/1/59.long

Cannabis and the brain.

Abstract

“The active compound in herbal cannabis, Delta(9)-tetrahydrocannabinol, exerts all of its known central effects through the CB(1) cannabinoid receptor. Research on cannabinoid mechanisms has been facilitated by the availability of selective antagonists acting at CB(1) receptors and the generation of CB(1) receptor knockout mice. Particularly important classes of neurons that express high levels of CB(1) receptors are GABAergic interneurons in hippocampus, amygdala and cerebral cortex, which also contain the neuropeptides cholecystokinin. Activation of CB(1) receptors leads to inhibition of the release of amino acid and monoamine neurotransmitters. The lipid derivatives anandamide and 2-arachidonylglycerol act as endogenous ligands for CB(1) receptors (endocannabinoids). They may act as retrograde synaptic mediators of the phenomena of depolarization-induced suppression of inhibition or excitation in hippocampus and cerebellum. Central effects of cannabinoids include disruption of psychomotor behaviour, short-term memory impairment, intoxication, stimulation of appetite, antinociceptive actions (particularly against pain of neuropathic origin) and anti-emetic effects. Although there are signs of mild cognitive impairment in chronic cannabis users there is little evidence that such impairments are irreversible, or that they are accompanied by drug-induced neuropathology. A proportion of regular users of cannabis develop tolerance and dependence on the drug. Some studies have linked chronic use of cannabis with an increased risk of psychiatric illness, but there is little evidence for any causal link. The potential medical applications of cannabis in the treatment of painful muscle spasms and other symptoms of multiple sclerosis are currently being tested in clinical trials. Medicines based on drugs that enhance the function of endocannabinoids may offer novel therapeutic approaches in the future.”

http://www.ncbi.nlm.nih.gov/pubmed/12764049

Multiple roles for the endocannabinoid system during the earliest stages of life: pre- and postnatal development.

Abstract

“The endocannabinoid system, including its receptors (CB(1) and CB(2)), endogenous ligands (‘endocannabinoids’), synthesising and degrading enzymes, as well as transporter molecules, has been detected from the earliest stages of embryonic development and throughout pre- and postnatal development. In addition, the endocannabinoids, notably 2-arachidonyl glycerol, are also present in maternal milk. During three distinct developmental stages (i.e. embryonic implantation, prenatal brain development and postnatal suckling), the endocannabinoid system appears to play an essential role for development and survival. Thus, during early pregnancy, successful embryonic passage through the oviduct and implantation into the uterus both require critical enzymatic control of optimal anandamide levels at the appropriate times and sites. During foetal life, the cannabinoid CB(1) receptor plays a major role in brain development, regulating neural progenitor differentiation into neurones and glia and guiding axonal migration and synaptogenesis. Postnatally, CB(1) receptor blockade interferes with the initiation of milk suckling in mouse pups, by inducing oral motor weakness, which exposes a critical role for CB(1) receptors in the initiation of milk suckling by neonates, possibly by interfering with innervation of the tongue muscles. Manipulating the endocannabinoid system by pre- and/or postnatal administration of cannabinoids or maternal marijuana consumption, has significant, yet subtle effects on the offspring. Thus, alterations in the dopamine, GABA and endocannabinoid systems have been reported while enhanced drug seeking behaviour and impaired executive (prefrontal cortical) function have also been observed. The relatively mild nature of the disruptive effects of prenatal cannabinoids may be understood in the framework of the intricate timing requirements and frequently biphasic effects of the (endo)cannabinoids. In conclusion, the endocannabinoid system plays several key roles in pre- and postnatal development. Future studies should further clarify the mechanisms involved and provide a better understanding of the adverse effects of prenatal exposure, in order to design strategies for the treatment of conditions such as infertility, mental retardation and failure-to-thrive.”

http://www.ncbi.nlm.nih.gov/pubmed/18426504

The endocannabinoid-CB receptor system: Importance for development and in pediatric disease.

Abstract

“Endogenous cannabinoids (endocannabinoids) and their cannabinoid CB1 and CB2 receptors, are present from the early stages of gestation and play a number of vital roles for the developing organism. Although most of these data are collected from animal studies, a role for cannabinoid receptors in the developing human brain has been suggested, based on the detection of “atypically” distributed CB1 receptors in several neural pathways of the fetal brain. In addition, a role for the endocannabinoid system for the human infant is likely, since the endocannabinoid 2-arachidonoyl glycerol has been detected in human milk. Animal research indicates that the Endocannabinoid-CB1 Receptor (‘ECBR’) system fulfills a number of roles in the developing organism: 1. embryonal implantation (requires a temporary and localized reduction in anandamide); 2. in neural development (by the transient presence of CB1 receptors in white matter areas of the nervous system); 3. as a neuroprotectant (anandamide protects the developing brain from trauma-induced neuronal loss); 4. in the initiation of suckling in the newborn (where activation of the CB1 receptors in the neonatal brain is critical for survival). 5. In addition, subtle but definite deficiencies have been described in memory, motor and addictive behaviors and in higher cognitive (‘executive’) function in the human offspring as result of prenatal exposure to marihuana. Therefore, the endocanabinoid-CB1 receptor system may play a role in the development of structures which control these functions, including the nigrostriatal pathway and the prefrontal cortex. From the multitude of roles of the endocannabinoids and their receptors in the developing organism, there are two distinct stages of development, during which proper functioning of the endocannabinoid system seems to be critical for survival: embryonal implantation and neonatal milk sucking. We propose that a dysfunctional Endocannabinoid-CB1 Receptor system in infants with growth failure resulting from an inability to ingest food, may resolve the enigma of “non-organic failure-to-thrive” (NOFTT). Developmental observations suggest further that CB1 receptors develop only gradually during the postnatal period, which correlates with an insensitivity to the psychoactive effects of cannabinoid treatment in the young organism. Therefore, it is suggested that children may respond positively to medicinal applications of cannabinoids without undesirable central effects. Excellent clinical results have previously been reported in pediatric oncology and in case studies of children with severe neurological disease or brain trauma. We suggest cannabinoid treatment for children or young adults with cystic fibrosis in order to achieve an improvement of their health condition including improved food intake and reduced inflammatory exacerbations.”

http://www.ncbi.nlm.nih.gov/pubmed/15159678

Cannabis reinforcement and dependence: role of the cannabinoid CB1 receptor.

Abstract

“Awareness of cannabis dependence as a clinically relevant issue has grown in recent years. Clinical and laboratory studies demonstrate that chronic marijuana smokers can experience withdrawal symptoms upon cessation of marijuana smoking and have difficulty abstaining from marijuana use. This paper will review data implicating the cannabinoid CB1 receptor in regulating the behavioral effects of Δ9-tetrahydrocannobinol (THC), the primary psycho-active component of cannabis, across a range of species. The behavioral effects that will be discussed include those that directly contribute to the maintenance of chronic marijuana smoking, such as reward, subjective effects, and the positive and negative reinforcing effects of marijuana, THC and synthetic cannabinoids. The role of the CB1 receptor in the development of marijuana dependence and expression of withdrawal will also be discussed. Lastly, treatment options that may alleviate withdrawal symptoms and promote marijuana abstinence will be considered.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2731704/

Dronabinol for the Treatment of Cannabis Dependence: A Randomized, Double-Blind, Placebo-Controlled Trial

   “The purpose of this study was to evaluate the safety and efficacy of dronabinol, a synthetic form of delta-9-tetrahydrocannabinol, a naturally occurring pharmacologically active component of marijuana, in treating cannabis dependence… This is the first trial using an agonist substitution strategy for treatment of cannabis dependence. Dronabinol showed promise, it was well-tolerated, and improved treatment retention and withdrawal symptoms. Future trials might test higher doses, combinations of dronabinol with other medications with complementary mechanisms, or with more potent behavioral interventions.

The agonist substitution strategy has been effective for other substance use disorders, mainly nicotine (nicotine patch, other nicotine replacement products, varenicline) and opioid dependence (methadone, buprenorphine). Therefore, dronabinol, an orally bioavailable synthetic form of delta-9-tetrahydrocannabinol (THC), the main psychoactive component of marijuana acting at the cannabinoid 1 (CB1) receptor, seems a logical candidate medication for cannabis dependence. An ideal agonist medication has low abuse potential, reduces withdrawal symptoms and craving, and decreases the reinforcing effects of the target drug, thereby facilitating abstinence. Dronabinol has been shown to reduce cannabis withdrawal symptoms in laboratory settings among non-treatment seeking cannabis users. Although dronabinol produced modest positive subjective effects among cannabis users in the laboratory, there is little evidence of abuse or diversion of dronabinol in community settings. We conducted a randomized, placebo-controlled trial to evaluate the safety and efficacy of dronabinol for patients seeking treatment for cannabis dependence. This is, to our knowledge, the largest clinical trial to date to evaluate a pharmacologic intervention for cannabis dependence, and the first to attempt agonist substitution.

.In conclusion, agonist substitution pharmacotherapy with dronabinol, a synthetic form of THC, showed promise for treatment of cannabis dependence, reducing withdrawal symptoms and improving retention in treatment, although it failed to improve abstinence. The trial showed that among adult cannabis-dependent patients, dronabinol was well accepted, with good adherence and few adverse events. Future studies should consider testing higher doses of dronabinol, with longer trial lengths, combining dronabinol with other medications acting through complementary mechanisms or more potent behavioral interventions. Moreover, the field should particularly seek to develop high affinity CB1 partial agonists.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154755/