Genetic or pharmacological depletion of cannabinoid CB1 receptor protects against dopaminergic neurotoxicity induced by methamphetamine in mice.

“Accumulating evidence suggests that cannabinoid ligands play delicate roles in cell survival and apoptosis decisions, and that cannabinoid CB1 receptors (CB1R) modulate dopaminergic function. However, the role of CB1R in methamphetamine (MA)-induced dopaminergic neurotoxicity in vivo remains elusive. Multiple high doses of MA increased phospho-ERK and CB1R mRNA expressions in the striatum of CB1R (+/+) mice. These increases were attenuated by CB1R antagonists (i.e., AM251 and rimonabant), an ERK inhibitor (U0126), or dopamine D2R antagonist (sulpiride). CB1R agonist-induced toxic effects were significantly attenuated by CB1R knockout, CB1R antagonists or PKCδ knockout. Therefore, our results suggest that interaction between D2R, ERK and CB1R is critical for MA-induced dopaminergic neurotoxicity and that PKCδ mediates dopaminergic damage induced by high-doses of CB1R agonist.” https://www.ncbi.nlm.nih.gov/pubmed/28363605]]>

Comparative antinociceptive effect of arachidonylcyclopropylamide, a cannabinoid 1 receptor agonist & lignocaine, a local anaesthetic agent, following direct intrawound administration in rats.

 Image result for Indian J Med Res.

“Treatment of inflammatory pain with opioids is accompanied by unpleasant and, at times, life-threatening side effects.

Cannabis produces antinociception as well as psychotropic effects. It was hypothesized that peripheral cannabinoid receptors outside the central nervous system could be selectively activated for relief of pain.

This study was undertaken to measure the antinociceptive effect of type 1 cannabinoid receptor (CB1r) agonist arachidonylcyclopropylamide (ACPA) in a rat model of inflammatory pain after intrawound administration and the effects were compared with lignocaine.

Lignocaine attenuated evoked pain behaviour whereas ACPA decreased guarding score. This difference was likely due to blockade of sodium ion channels and the activation of peripheral CB1r, respectively. Central side effects were absent after ACPA treatment. Further studies need to be done to assess the effect of ACPA treatment in clinical conditions.”

https://www.ncbi.nlm.nih.gov/pubmed/28361827

Comparative antinociceptive effect of arachidonylcyclopropylamide, a cannabinoid 1 receptor agonist & lignocaine, a local anaesthetic agent, following direct intrawound administration in rats.

 Image result for Indian J Med Res. “Treatment of inflammatory pain with opioids is accompanied by unpleasant and, at times, life-threatening side effects. Cannabis produces antinociception as well as psychotropic effects. It was hypothesized that peripheral cannabinoid receptors outside the central nervous system could be selectively activated for relief of pain. This study was undertaken to measure the antinociceptive effect of type 1 cannabinoid receptor (CB1r) agonist arachidonylcyclopropylamide (ACPA) in a rat model of inflammatory pain after intrawound administration and the effects were compared with lignocaine.

Lignocaine attenuated evoked pain behaviour whereas ACPA decreased guarding score. This difference was likely due to blockade of sodium ion channels and the activation of peripheral CB1r, respectively. Central side effects were absent after ACPA treatment. Further studies need to be done to assess the effect of ACPA treatment in clinical conditions.” https://www.ncbi.nlm.nih.gov/pubmed/28361827
]]>