Modulation of The Balance Between Cannabinoid CB1 and CB2 Receptor Activation During Cerebral Ischemic/Reperfusion Injury

“A number of investigations have shown that CB2 receptor activation has anti-inflammatory therapeutic potential in various CNS diseases, such as multiple sclerosis, traumatic brain injury and Alzheimer’s disease. Because inflammatory responses have been shown to be important contributors to secondary injury following cerebral ischemia; the CB2 receptor has been investigated as a potential therapeutic target in stroke…

The most striking changes were obtained by combing a CB1 antagonist with a CB2 agonist. This combination elevated the cerebral blood flow during ischemia and reduced infarction by 75%…during cerebral ischemia/reperfusion injury, inhibition of CB1 receptor activation is protective while inhibition of CB2 receptor activation is detrimental.

 The greatest degree of neuroprotection was obtained by combining an inhibitor of CB1 activation with an exogenous CB2 agonist.

In conclusion, the results of this investigation demonstrate dynamic changes in the expression of CB1 and CB2 receptors during cerebral ischemic/reperfusion injury in mice. The effects of stimulation of these receptors on damage ischemia/reperfusion injury differed dramatically. Stimulation of the CB2 receptor was found to be neuroprotective, while inhibition of the CB1 receptor was also protective,too. The combination of a CB2 agonist and a CB1 antagonist provided the greatest degree of protection and indicated a synergistic effect derived from combining these agents. Therefore, changing the balance of stimulation of these receptors by endogenous cannabinoids may provide an important therapeutic strategy during stroke.”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577828/

Cannabidiol Reduces Aβ-Induced Neuroinflammation and Promotes Hippocampal Neurogenesis through PPARγ Involvement

“CBD blunted neuroinflammation sustained by astrocytes through PPARγ selective activation in vitro and in vivo.

Results from the present study prove the selective involvement of PPARγ in the anti-inflammatory and neuroprotective effects of CBD here observed either in vitro and in vivo. In addition, CBD significantly promoted neurogenesis in Aβ injured rat hippocampi, much expanding its already wide spectrum of beneficial actions exerted in AD models, a non negligible effect, due to its capability to activate PPARγ.

In conclusion, results of the present research demonstrate that CBD may exert protective functions through a PPARγ dependent activation, which leads to a reduction in reactive gliosis and consequently in neurodegeneration. Moreover, in the current experimental conditions this phytocannabinoid appears to stimulate neurogenesis since it increases DCX immunopositive cell proliferation rate in rat DG.

Innovative therapeutic approaches which could significantly improve AD course require new molecules that will be able to have an impact on different pathological pathways, which converge at the progressive neurological decline. CBD has shown a capability to profoundly reduce reactive astrogliosis and to guarantee both direct and indirect neuronal protection in Aβ induced neuroinflammation/neurodegeration. So far, the lack of understanding of the precise molecular mechanism involved in CBD pharmacological actions, has had limited interest and has puzzled investigators.

Currently, findings of the present study throw some light on the issue, and frame CBD as a new PPARγ activator.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230631/

The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic-ischemic brain damage in mice is mediated by CB(2) and adenosine receptors.

Abstract

“To investigate the mechanisms involved in cannabidiol (CBD)-induced neuroprotection in hypoxic-ischemic (HI) immature brain, forebrain slices from newborn mice underwent oxygen and glucose deprivation in the presence of vehicle, or CBD alone or with selective antagonists of cannabinoid CB(1) and CB(2), and adenosine A(1) and A(2) receptors. CBD reduced acute (LDH efflux to the incubation medium) and apoptotic (caspase-9 concentration in tissue) HI brain damage by reducing glutamate and IL-6 concentration, and TNFalpha, COX-2, and iNOS expression. CBD effects were reversed by the CB(2) antagonist AM630 and by the A(2A) antagonist SCH58261. The A(1A) antagonist DPCPX only counteracted the CBD reduction of glutamate release, while the CB(1) antagonist SR141716 did not modify any effect of CBD. In conclusion, CBD induces robust neuroprotection in immature brain, by acting on some of the major mechanisms underlying HI cell death; these effects are mediated by CB(2) and adenosine, mainly A(2A), receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/19900555

Neuroprotection by Δ9-Tetrahydrocannabinol, the Main Active Compound in Marijuana, against Ouabain-Induced In Vivo Excitotoxicity

“These results provide evidence that the cannabinoid system can serve to protect the brain against neurodegeneration.”

“In summary, we have shown that in an in vivo model of neurodegeneration Δ9-THC reduces neuronal damage via a CB1-receptor-mediated mechanism. This holds in both the acute and late phase after induction of excitotoxicity. Δ9-THC inhibits astrogliosis via a non-CB1-receptor-controlled mechanism. The results strengthen the concept that the endogenous cannabinoid system may serve to establish a defense system for the brain. This system may be functional in several neurodegenerative diseases in which excitotoxicity is thought to play a role, such as amyotrophic lateral sclerosis, Huntington’s and Parkinson’s diseases, and also in acute neuronal damage as found in stroke and traumatic brain injury. It is conceivable that the endogenous cannabinoid system can be exploited for therapeutic interventions in these types of primarily incurable diseases.”

http://www.jneurosci.org/content/21/17/6475.long

The seek of neuroprotection: introducing cannabinoids.

Abstract

“The cannabinoid system is constituted by some endogenous ligands (endocannabinoids), usually arachydonic acid derivatives, and their specific receptors. The endogenous cannabinoid system (ECS) is involved in the control of synaptic transmission, modulating memory, motivation, movement, nociception, appetite and thermoregulation. ECS also exert extraneural effects, mainly immunomodulation and vasodilation. Two cannabinoid receptors have been cloned so far: CB(1) receptors are expressed in the central nervous system (CNS) but can also be found in glial cells and in peripheral tissues; CB(1) receptors are Gi/o protein coupled receptors that modulate the activity of several plasma membrane proteins and intracellular signaling pathways. CB(2) receptors are also Gi/o protein-coupled receptors; although it is accepted that CB(2) receptors are not expressed in forebrain neurons, they have been described in activated glia. Some of the cannabinoids activate other receptors, for instance vanilloid receptors (TRPV1). Lately, the ECS is emerging as a natural system of neuroprotection. This consideration is based on some properties of cannabinoids as their vasodilatory effect, the inhibition of the release of excitotoxic amino acids and cytokines, and the modulation of oxidative stress and toxic production of nitric oxide. Such effects have been demonstrated in adult and newborn animal models of acute and chronic neurodegenerative conditions, and postulate cannabinoids as valuable neuroprotective agents. Patents related to cannabinoid receptors are also discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/18221224

The therapeutic potential of the cannabinoids in neuroprotection.

Abstract

“After thousands of years of interest the last few decades have seen a huge increase in our knowledge of the cannabinoids and their mode of action. Their potential as medical therapeutics has long been known. However, very real concerns over their safety and efficacy have lead to caution and suspicion when applying the legislature of modern medicine to these compounds. The ability of this diverse family of compounds to modulate neurotransmission and act as anti-inflammatory and antioxidative agents has prompted researchers to investigate their potential as neuroprotective agents. Indeed, various cannabinoids rescue dying neurones in experimental forms of acute neuronal injury, such as cerebral ischaemia and traumatic brain injury. Cannabinoids also provide symptomatic relief in experimental models of chronic neurodegenerative diseases, such as multiple sclerosis and Huntington’s disease. This preclinical evidence has provided the impetus for the launch of a number of clinical trials in various conditions of neurodegeneration and neuronal injury using compounds derived from the cannabis plant. Our understanding of cannabinoid neurobiology, however, must improve if we are to effectively exploit this system and take advantage of the numerous characteristics that make this group of compounds potential neuroprotective agents.”

http://www.ncbi.nlm.nih.gov/pubmed/12387700

Cannabinoids and neuroprotection.

Abstract

“Cannabinoid compounds are endowed with pharmacological properties that make them interesting candidates for therapeutic development. These properties have been known since antiquity. However, in the last decade extremely important advances in the understanding of the physiology, pharmacology, and molecular biology of the cannabinoid system have given this field of research fresh impetus and have renewed the interest in the possible clinical exploitation of these compounds. In the present review we summarize the effects elicited, at the cellular level, by cannabinoids acting through receptor-dependent and receptor-independent mechanisms. These data suggest different ways by which cannabinoids may act as neuroprotective agents (prevention of excitotoxicity by inhibition of glutamate release, antioxidant effects, anti-inflammatory actions, etc.). The experimental evidence supporting these hypotheses are presented and discussed with regard to both preclinical and clinical studies in disease states such as cerebral ischemia, brain trauma, and Multiple Sclerosis.”

http://www.ncbi.nlm.nih.gov/pubmed/11831553

Neuroprotective antioxidants from marijuana.

“Cannabidiol and other cannabinoids were examined as neuroprotectants in rat cortical neuron cultures exposed to toxic levels of the neurotransmitter, glutamate.

The psychotropic cannabinoid receptor agonist delta 9-tetrahydrocannabinol (THC) and cannabidiol, (a non-psychoactive constituent of marijuana), both reduced NMDA, AMPA and kainate receptor mediated neurotoxicities.

Neuroprotection was not affected by cannabinoid receptor antagonist, indicating a (cannabinoid) receptor-independent mechanism of action. Glutamate toxicity can be reduced by antioxidants. Using cyclic voltametry and a fenton reaction based system,

it was demonstrated that Cannabidiol, THC and other cannabinoids are potent antioxidants. As evidence that cannabinoids can act as an antioxidants in neuronal cultures,

 cannabidiol was demonstrated to reduce hydroperoxide toxicity in neurons.

In a head to head trial of the abilities of various antioxidants to prevent glutamate toxicity, cannabidiol was superior to both alpha-tocopherol and ascorbate in protective capacity.

Recent preliminary studies in a rat model of focal cerebral ischemia suggest that cannabidiol may be at least as effective in vivo as seen in these in vitro studies.”

http://www.ncbi.nlm.nih.gov/pubmed/10863546

From cannabis to the endocannabinoid system: refocussing attention on potential clinical benefits.

Image result for West Indian Med J

“Cannabis sativa is one of the oldest herbal remedies known to man. Over the past four thousand years, it has been used for the treatment of numerous diseases but due to its psychoactive properties, its current medicinal usage is highly restricted. In this review, we seek to highlight advances made over the last forty years in the understanding of the mechanisms responsible for the effects of cannabis on the human body and how these can potentially be utilized in clinical practice. During this time, the primary active ingredients in cannabis have been isolated, specific cannabinoid receptors have been discovered and at least five endogenous cannabinoid neurotransmitters (endocannabinoids) have been identified. Together, these form the framework of a complex endocannabinoid signalling system that has widespread distribution in the body and plays a role in regulating numerous physiological processes within the body. Cannabinoid ligands are therefore thought to display considerable therapeutic potential and the drive to develop compounds that can be targeted to specific neuronal systems at low enough doses so as to eliminate cognitive side effects remains the ‘holy grail’ of endocannabinoid research.”

http://www.ncbi.nlm.nih.gov/pubmed/23155985

Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

Philosophical Transactions of the Royal Society B: Biological Sciences: 367 (1607)

“Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive ‘multi-targeting’.”  https://www.ncbi.nlm.nih.gov/pubmed/23108552

“Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities”  http://rstb.royalsocietypublishing.org/content/367/1607/3353.long