Category Archives: Dementia
The potential protective effects of cannabinoid receptor agonist WIN55,212-2 on cognitive dysfunction is associated with the suppression of autophagy and inflammation in an experimental model of vascular dementia.
“Vascular dementia (VaD) is characteristic of chronic brain ischemia and progressive memory decline, which has a high incidence in the elderly. However, there are no effective treatments for VaD, and the underlying mechanism of its pathogenesis remains unclear.
This study investigated the effects of a synthetic cannabinoid receptor agonist WIN55,212-2 (WIN) on VaD, and molecular mechanisms of the effects.
These data indicate that WIN exerts a neuroprotective effect on the cognitive deficits of VaD rats, which may be associated with the suppression of excessive autophagy and inflammation.”
https://www.ncbi.nlm.nih.gov/pubmed/29945070
https://www.psy-journal.com/article/S0165-1781(17)31479-8/fulltext
Novel insights into mitochondrial molecular targets of iron-induced neurodegeneration: reversal by cannabidiol.
“Evidence has demonstrated iron accumulation in specific brain regions of patients suffering from neurodegenerative disorders, and this metal has been recognized as a contributing factor for neurodegeneration.
Using an experimental model of brain iron accumulation, we have shown that iron induces severe memory deficits that are accompanied by oxidative stress, increased apoptotic markers, and decreased synaptophysin in the hippocampus of rats.
The present study aims to characterize iron loading effects as well as to determine the molecular targets of cannabidiol (CBD), the main non-psychomimetic compound of Cannabis sativa, on mitochondria.
Rats received iron in the neonatal period and CBD for 14 days in adulthood. Iron induced mitochondrial DNA (mtDNA) deletions, decreased epigenetic modulation of mtDNA, mitochondrial ferritin levels, and succinate dehydrogenase activity.
CBD rescued mitochondrial ferritin and epigenetic modulation of mtDNA, and restored succinate dehydrogenase activity in iron-treated rats.
These findings provide new insights into molecular targets of iron neurotoxicity and give support for the use of CBD as a disease modifying agent in the treatment of neurodegenerative diseases.”
https://www.ncbi.nlm.nih.gov/pubmed/29374603

“Neurogenesis is influenced by various external factors such as enriched environments. Some researchers had postulated that neurogenesis has contributed to the hippocampal learning and memory. This project was designed to observe the effect of Delta-9-tetrahydrocannabinol (∆9-THC) in cognitive performance that influenced by the neurogenesis.
Different doses of ∆9-THC were used for observing the neurogenesis mechanism occurs in the hippocampus of rats. The brains were stained with antibodies, namely BrdU, glial fibrillary acidic protein (GFAP), nestin, doublecortin (DCX) and class III β-tubulin (TuJ-1). The cognitive test was used novel-object discrimination test (NOD) while the proteins involved, DCX and brain-derived neurotrophic factor (BDNF), were measured.
Throughout this study, ∆9-THC enhanced the markers involved in all stages of neurogenesis mechanism. Simultaneously, the cognitive behaviour of rat also showed improvement in learning and memory functions observed in behavioural test and molecular perspective.
Administration of ∆9-THC was observed to enhance the neurogenesis in the brain, especially in hippocampus thus improved the cognitive function of rats.”
“This work was conducted to prepare β-caryophyllene-hydroxypropyl-β-cyclodextrin inclusion complex (HPβCD/BCP) and investigate its effects and mechanisms on cognitive deficits in vascular dementia (VD) rats.
Overall, the findings demonstrated the protective effects of HPβCD/BCP against cognitive deficits induced by chronic cerebral ischemia and suggested the potential of HPβCD/BCP in the therapy of vascular dementia in the future.”
