“Cannabis has been used in folk medicine to alleviate pain, depression, amenorrhea, inflammation and numerous other medical conditions. In cancer patients specifically, cannabinoids are well known to exert palliative effects; their best-established use is the inhibition of chemotherapy-induced nausea and vomiting, but they are applied also to alleviate pain, stimulate appetite, and attenuate wasting. More recently, cannabinoids have gained special attention for their role in cancer cell proliferation and death. Anti-cancer efficacy of cannabinoids: The ability of cannabinoids to reduce tumor growth was reported for the first time by Munson et al. in 1975. They showed by in vitro and in vivo experiments that several phytocannabinoids, including THC, decreased Lewis lung adenocarcinoma proliferation in a dose-dependent manner. Nevertheless, it was not until the 2000s that the interest in these compounds as anti-cancer agents was renewed, predominantly due to the work of Guzman in gliomas, and the demonstration of cannabinoids’ anti-cancer effects on various types of tumors. The anti-tumorigenic effect of the endo- and phytocannabinoids was demonstrated in several in vitro and in vivo models of a wide variety of adult tumors including glioma, prostate, breast, leukemia, lymphoma, pancreas, melanoma, thyroid, colorectal and hepatocellular carcinoma tumors. Given our positive results, we suggest that non-THC cannabinoids such as CBD might provide a basis for the development of novel therapeutic strategies without the typical psychotropic effects of THC that limit its use in pediatric patients. Overall, the cannabinoids, and specifically the non-psychoactive CBD, may show future promise in the treatment of cancer” https://www.ima.org.il/FilesUpload/IMAJ/0/228/114216.pdf https://www.ima.org.il/imaj/ViewArticle.aspx?aId=4044 https://www.ncbi.nlm.nih.gov/pubmed/28457057]]>
Category Archives: Endocannabinoid System
Cannabis in Inflammatory Bowel Diseases: from Anecdotal Use to Medicalization?
“Inflammatory bowel diseases (IBD) are disorders of chronic intestinal inflammation of unknown etiology. The basic pathophysiological process is that of immune mediated inflammation affecting the intestinal tract. This process is dependent on and governed by both genetic and environmental factors. There are two distinct forms of IBD – ulcerative colitis and Crohn’s disease. There is no curative medical treatment. Furthermore, over 30% of patients, and over 70% with Crohn’s disease, will need surgical intervention for their disease. Thus, it comes as no surprise that many patients will turn to complementary or alternative medicine at some stage of their disease. Recent information reveals that between 16% and 50% of patients admit to having tried marijuana for their symptoms. There is a long list of gastrointestinal symptoms that have been reported to be relieved by cannabis. These include anorexia, nausea, abdominal pain, diarrhea, gastroparesis – all of which can be part of IBD. These effects are related to the fact that the gastrointestinal tract is rich in cannabinoid (CB) receptors and their endogenous ligands, comprising together the endocannabinoid system (ECS). In conclusion, use of cannabis is common in IBD, and it seems to be mostly safe. Accumulating preliminary data from human studies support a beneficial role of cannabinoids in IBD.” https://www.ima.org.il/FilesUpload/IMAJ/0/228/114217.pdf https://www.ima.org.il/imaj/ViewArticle.aspx?aId=4045 https://www.ncbi.nlm.nih.gov/pubmed/28457058]]>
Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity
“Pain relief without the high. Researchers at Leiden University led by Mario van der Stelt (Leiden Institute for Chemistry) have set ‘gold standards’ for developing new painkillers based on the medicinal effects of cannabis.” https://www.sciencedaily.com/releases/2017/01/170104103916.htm

The endocannabinoid system as a target for novel anxiolytic drugs.
“The endocannabinoid (eCB) system has attracted attention for its role in various behavioral and brain functions, and as a therapeutic target in neuropsychiatric disease states, including anxiety disorders and other conditions resulting from dysfunctional responses to stress. In this mini-review, we highlight components of the eCB system that offer potential ‘druggable’ targets for new anxiolytic medications, emphasizing some of the less well-discussed options. We discuss how selectively amplifying eCBs recruitment by interfering with eCB-degradation, via fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), has been linked to reductions in anxiety-like behaviors in rodents and variation in human anxiety symptoms. We also discuss a non-canonical route to regulate eCB degradation that involves interfering with cyclooxygenase-2 (COX-2). Next, we discuss approaches to targeting eCB receptor-signaling in ways that do not involve the cannabinoid receptor subtype 1 (CB1R); by targeting the CB2R subtype and the transient receptor potential vanilloid type 1 (TRPV1). Finally, we review evidence that cannabidiol (CBD), while representing a less specific pharmacological approach, may be another way to modulate eCBs and interacting neurotransmitter systems to alleviate anxiety. Taken together, these various approaches provide a range of plausible paths to developing novel compounds that could prove useful for treating trauma-related and anxiety disorders.” https://www.ncbi.nlm.nih.gov/pubmed/28434588]]>
Endocannabinoid system acts as a regulator of immune homeostasis in the gut
“Exogenous cannabinoids such as marijuana exert their influence through cannabinoid receptors. Endogenous cannabinoids such as anandamide (AEA) function through the same receptors, and their physiological roles are a subject of intense study. Here, we show that AEA plays a pivotal role in maintaining immunological health in the gut. The immune system in the gut actively tolerates the foreign antigens present in the gut through mechanisms that are only partially understood. We show that AEA contributes to this critical process by promoting the presence of CX3CR1hi macrophages, which are immunosuppressive. These results uncover a major conversation between the immune and nervous systems. In addition, with the increasing prevalence of ingestion of exogenous marijuana, our study has significant implications for public health.” http://www.pnas.org/content/early/2017/04/18/1612177114.full “Our study unveils a role for the endocannabinoid system in maintaining immune homeostasis in the gut/pancreas and reveals a conversation between the nervous and immune systems using distinct receptors.” https://www.ncbi.nlm.nih.gov/pubmed/28439004
“Active ingredients in both hot peppers and cannabis calm the gut’s immune system” https://medicalxpress.com/news/2017-04-ingredients-hot-peppers-cannabis-calm.html
]]>Editorial: The CB2 Cannabinoid System: A New Strategy in Neurodegenerative Disorder and Neuroinflammation

“The cannabinoid receptors subtype 2 (CB2R) are emerging as novel targets for the development of new therapeutic approaches and PET probes useful to early diagnose neuroinflammation as first step in several neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson disease (PD).
This Research Topic is mainly focused on the involvment of CB2R in neurodegenerative disorders and on the usefulness of CB2R ligands in the therapy and early diagnosis of neuroinflammation as onset of neurodegeneration.
In the reviews of Aso and Ferrer and Cassano et al. an interesting and exaustive overview of the endogenous cannabinoid signaling and its role in neuroinflammation and neurogenesis is reported. The potential of CB2R as therapeutic target in AD is argued by several evidences derived by robust experimental models and the effects modulated by CB2R agonists on different pathways involved in the pathogenesis of AD are discussed; indeed, these ligands are able to reduce inflammation, Aβ production and deposition, tau protein hyper-phosphorylation and oxidative stress damage caused by Aβ peptides. CB2R agonists are also able to induce Aβ clearance leading to cognitive improvement in AD models.
In conclusion, considering that neuroinflammation has been widely reported as indicator and modulator of neurodegeneration, the reduction of the neuroinflammatory responses could be considered as a new therapeutic strategy in these diseases. Moreover, the selective CB2R overexpression on the activated-microglial cells provides also a highly specialized target useful to an early diagnosis of the neurodegenerative diseases.”
http://journal.frontiersin.org/article/10.3389/fnins.2017.00196/full]]>CB1 cannabinoid receptor drives oocyte maturation and embryo development via PI3K/Akt and MAPK pathways.
“Endocannabinoids have been recognized as mediators of practically all reproductive events in mammals. However, little is known about the role of this system in oocyte maturation. In a mouse model, we observed that activation of the cannabinoid receptor (CB)1during in vitro oocyte maturation modulated the phosphorylation status of Akt and ERK1/2 and enhanced the subsequent embryo production. In the absence of the CB1 receptor, in vivo oocyte maturation was impaired and embryo development delayed. The CB2receptor was unable to rescue these effects. Finally, we confirmed abnormal oocyte maturation rather than impaired embryonic transport through the oviduct in CB1 knockouts. Our data suggest that cannabinoid agonists may be useful in vitro maturation supplements. For in vitro fertilization patients intolerant to gonadotropins, this could be a promising and only option.” https://www.ncbi.nlm.nih.gov/pubmed/28428264]]>
Cannabinoids as Modulators of Cell Death: Clinical Applications and Future Directions.
“Endocannabinoids are bioactive lipids that modulate various physiological processes through G-protein-coupled receptors (CB1 and CB2) and other putative targets. By sharing the activation of the same receptors, some phytocannabinoids and a multitude of synthetic cannabinoids mimic the effects of endocannabinoids.
In recent years, a growing interest has been dedicated to the study of cannabinoids properties for their analgesic, antioxidant, anti-inflammatory and neuroprotective effects. In addition to these well-recognized effects, various studies suggest that cannabinoids may affect cell survival, cell proliferation or cell death. These observations indicate that cannabinoids may play an important role in the regulation of cellular homeostasis and, thus, may contribute to tissue remodelling and cancer treatment.
For a long time, the study of cannabinoid receptor signalling has been focused on the classical adenylyl cyclase/cyclic AMP/protein kinase A (PKA) pathway. However, this pathway does not totally explain the wide array of biological responses to cannabinoids. In addition, the diversity of receptors and signalling pathways that endocannabinoids modulate offers an interesting opportunity for the development of specific molecules to disturb selectively the endogenous system.
Moreover, emerging evidences suggest that cannabinoids ability to limit cell proliferation and to induce tumour-selective cell death may offer a novel strategy in cancer treatment.
This review describes the main properties of cannabinoids in cell death and attempts to clarify the different pathways triggered by these compounds that may help to understand the complexity of respective molecular mechanisms and explore the potential clinical benefit of cannabinoids use in cancer therapies.”
https://www.ncbi.nlm.nih.gov/pubmed/28425013
“We recently uncovered a signaling mechanism by which the endocannabinoid anandamide mediates the action of oxytocin, a neuropeptide that is crucial for social behavior, to control social reward. Oxytocin signaling has been implicated in autism spectrum disorder (ASD), and social reward is a key aspect of social functioning that is thought to be disrupted in ASD. Therefore, as a proof of principle for the core component of ASD—social impairment—we tested an endocannabinoid-enhancing compound on two widely studied mouse models of ASD, the BTBR and fmr1−/− (model of Fragile X Syndrome).
Remarkably, we found that FAAH blockade completely reversed the social impairment in both mouse models. CB1 receptor blockade prevented the prosocial action of FAAH inhibition in BTBR mice.
The results suggest that increasing anandamide activity at CB1 receptors improves ASD-related social impairment and identify FAAH as a novel therapeutic target for ASD.