“The endocannabinoid system (ECS) is a key cellular signalling system that has been implicated in the regulation of diverse cellular functions. Importantly, growing evidence suggests that the biological actions of the ECS may, in part, be mediated through its ability to regulate the production and/or release of nitric oxide, a ubiquitous bioactive molecule, which functions as a versatile signalling intermediate. Herein, we review and discuss evidence pertaining to ECS-mediated regulation of nitric oxide production, as well as the involvement of reactive nitrogen species in regulating ECS-induced signal transduction by highlighting emerging work supporting nitrergic modulation of ECS function. Importantly, the studies outlined reveal that interactions between the ECS and nitrergic signalling systems can be both stimulatory and inhibitory in nature, depending on cellular context. Moreover, such crosstalk may act to maintain proper cell function, whereas abnormalities in either system can undermine cellular homoeostasis and contribute to various pathologies associated with their dysregulation. Consequently, future studies targeting these signalling systems may provide new insights into the potential role of the ECS -: nitric oxide signalling axis in disease development and/or lead to the identification of novel therapeutic targets for the treatment of nitrosative stress-related neurological, cardiovascular, and metabolic disorders.” https://www.ncbi.nlm.nih.gov/pubmed/28130308]]>
Category Archives: Endocannabinoid System
Targeted metabolomics shows plasticity in the evolution of signaling lipids and uncovers old and new endocannabinoids in the plant kingdom.
“The remarkable absence of arachidonic acid (AA) in seed plants prompted us to systematically study the presence of C20 polyunsaturated fatty acids, stearic acid, oleic acid, jasmonic acid (JA), N-acylethanolamines (NAEs) and endocannabinoids (ECs) in 71 plant species representative of major phylogenetic clades. Given the difficulty of extrapolating information about lipid metabolites from genetic data we employed targeted metabolomics using LC-MS/MS and GC-MS to study these signaling lipids in plant evolution. Intriguingly, the distribution of AA among the clades showed an inverse correlation with JA which was less present in algae, bryophytes and monilophytes. Conversely, ECs co-occurred with AA in algae and in the lower plants (bryophytes and monilophytes), thus prior to the evolution of cannabinoid receptors in Animalia. We identified two novel EC-like molecules derived from the eicosatetraenoic acid juniperonic acid, an omega-3 structural isomer of AA, namely juniperoyl ethanolamide and 2-juniperoyl glycerol in gymnosperms, lycophytes and few monilophytes. Principal component analysis of the targeted metabolic profiles suggested that distinct NAEs may occur in different monophyletic taxa. This is the first report on the molecular phylogenetic distribution of apparently ancient lipids in the plant kingdom, indicating biosynthetic plasticity and potential physiological roles of EC-like lipids in plants.” https://www.ncbi.nlm.nih.gov/pubmed/28120902]]>
Molecular Targets of the Phytocannabinoids: A Complex Picture.
“For centuries, hashish and marihuana, both derived from the Indian hemp Cannabis sativa L., have been used for their medicinal, as well as, their psychotropic effects.
These effects are associated with the phytocannabinoids which are oxygen containing C21 aromatic hydrocarbons found in Cannabis sativa L.
To date, over 120 phytocannabinoids have been isolated from Cannabis.
For many years, it was assumed that the beneficial effects of the phytocannabinoids were mediated by the cannabinoid receptors, CB1 and CB2. However, today we know that the picture is much more complex, with the same phytocannabinoid acting at multiple targets.
This contribution focuses on the molecular pharmacology of the phytocannabinoids, including Δ9-THC and CBD, from the prospective of the targets at which these important compounds act.”
Molecular Pharmacology of Phytocannabinoids.
“Cannabis sativa has been used for recreational, therapeutic and other uses for thousands of years.
The plant contains more than 120 C21 terpenophenolic constituents named phytocannabinoids. The Δ9-tetrahydrocannabinol type class of phytocannabinoids comprises the largest proportion of the phytocannabinoid content.
Δ9-tetrahydrocannabinol was first discovered in 1971. This led to the discovery of the endocannabinoid system in mammals, including the cannabinoid receptors CB1 and CB2.
Δ9-Tetrahydrocannabinol exerts its well-known psychotropic effects through the CB1 receptor but this effect of Δ9-tetrahydrocannabinol has limited the use of cannabis medicinally, despite the therapeutic benefits of this phytocannabinoid. This has driven research into other targets outside the endocannabinoid system and has also driven research into the other non-psychotropic phytocannabinoids present in cannabis.
This chapter presents an overview of the molecular pharmacology of the seven most thoroughly investigated phytocannabinoids, namely Δ9-tetrahydrocannabinol, Δ9-tetrahydrocannabivarin, cannabinol, cannabidiol, cannabidivarin, cannabigerol, and cannabichromene.
The targets of these phytocannabinoids are defined both within the endocannabinoid system and beyond.
The pharmacological effect of each individual phytocannabinoid is important in the overall therapeutic and recreational effect of cannabis and slight structural differences can elicit diverse and competing physiological effects.
The proportion of each phytocannabinoid can be influenced by various factors such as growing conditions and extraction methods. It is therefore important to investigate the pharmacology of these seven phytocannabinoids further, and characterise the large number of other phytocannabinoids in order to better understand their contributions to the therapeutic and recreational effects claimed for the whole cannabis plant and its extracts.”
https://www.ncbi.nlm.nih.gov/pubmed/28120231
“The skin serves as the foremost barrier between the internal body and the external world, providing crucial protection against pathogens and chemical, mechanical, and ultraviolet damages. The skin is a central player in the intricate network of immune, neurologic, and endocrine systems. The endocannabinoid system (ECS) includes an extensive network of bioactive lipid mediators and their receptors, functions to modulate appetite, pain, mood, and memory, and has recently been implicated in skin homeostasis. Disruption of ECS homeostasis is implicated in the pathogenesis of several prevalent skin conditions. In this review, we highlight the role of endocannabinoids in maintaining skin health and homeostasis and discuss evidence on the role of ECS in several eczematous dermatoses including atopic dermatitis, asteatotic eczema, irritant contact dermatitis, allergic contact dermatitis, and chronic pruritus. The compilation of evidence may spark directions for future investigations on how the ECS may be a therapeutic target for dermatologic conditions.”
“The identification and cloning of the two major