Inhibition of human neutrophil chemotaxis by endogenous cannabinoids and phytocannabinoids: evidence for a site distinct from CB1 and CB2.

“Here, we show a novel pharmacology for inhibition of human neutrophil migration by endocannabinoids, phytocannabinoids, and related compounds.

This study reveals that certain endogenous lipids, phytocannabinoids, and related ligands are potent inhibitors of human neutrophil migration, and it implicates a novel pharmacological target distinct from cannabinoid CB(1) and CB(2) receptors; this target is antagonized by the endogenous compound N-arachidonoyl l-serine.

Furthermore, our findings have implications for the potential pharmacological manipulation of elements of the endocannabinoid system for the treatment of various inflammatory conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/17965195

Turning Over a New Leaf: Cannabinoid and Endocannabinoid Modulation of Immune Function.

“Cannabis is a complex substance that harbors terpenoid-like compounds referred to as phytocannabinoids.

The major psychoactive phytocannabinoid found in cannabis ∆9-tetrahydrocannabinol (THC) produces the majority of its pharmacological effects through two cannabinoid receptors, termed CB1and CB2. The discovery of these receptors as linked functionally to distinct biological effects of THC, and the subsequent development of syntheticcannabinoids, precipitated discovery of the endogenous cannabinoid (or endocannabinoid) system.

This system consists of the endogenous lipid ligands N- arachidonoylethanolamine (anandamide; AEA) and 2-arachidonylglycerol (2-AG), their biosynthetic and degradative enzymes, and the CB1and CB2 receptors that they activate. Endocannabinoids have been identified in immune cells such as monocytes, macrophages, basophils, lymphocytes, and dendritic cells and are believed to be enzymatically produced and released “on demand” in a similar fashion as the eicosanoids.

It is now recognized that other phytocannabinoids such as cannabidiol (CBD) and cannabinol (CBN) can alter the functional activities of the immune system.

This special edition of the Journal of Neuroimmune Pharmacology (JNIP) presents a collection of cutting edge original research and review articles on the medical implications of phytocannabinoids and the endocannabinoid system.

The goal of this special edition is to provide an unbiased assessment of the state of research related to this topic from leading researchers in the field.

The potential untoward effects as well as beneficial uses of marijuana, its phytocannabinoid composition, and synthesized cannabinoid analogs are discussed.

In addition, the role of the endocannabinoid system and approaches to its manipulation to treat select human disease processes are addressed.”

http://www.ncbi.nlm.nih.gov/pubmed/26054900

“A variety of cannabinoids was examined in these studies, including the FDA-approved synthetic cannabinoid receptor agonist nabilone, an oral mucosal cannabis spray, the FAAH inhibitor PF-04457845, oral or inhaled cannabis extract, and smoked cannabis. The majority of these studies revealed modest analgesic effects of these formulations without serious side effects, lending credence to the idea that cannabinoid-based medications ultimately may be a reasonable treatment option for chronic non-cancer pain.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469415/

A Cannabinoid CB1 Receptor Positive Allosteric Modulator Reduces Neuropathic Pain in the Mouse with no Psychoactive Effects.

“The CB1 receptor represents a promising target for the treatment of several disorders including pain-related disease states.

However, therapeutic applications of Δ9-tetrahydrocannabinol (THC) and other CB1 orthosteric receptor agonists remain limited because of psychoactive side effects. Positive allosteric modulators (PAMs) offer an alternative approach to enhance CB1 receptor function for therapeutic gain with the promise of reduced side effects…

These data suggest that ZCZ011 acts as a CB1 PAM and provide the first proof of principle that CB1 PAMs offer a promising strategy to treat neuropathic and inflammatory pain with minimal or no cannabimimetic side effects.”

http://www.ncbi.nlm.nih.gov/pubmed/26052038

Targeting cannabinoid receptors as a novel approach in the treatment of graft-versus-host disease: evidence from an experimental murine model.

An external file that holds a picture, illustration, etc.
Object name is zpt0091195260001.jpg

“Allogeneic hematopoietic cell transplantation (HCT) is widely used to treat patients with life-threatening malignant and nonmalignant hematological diseases. However, allogeneic HCT often is accompanied by severe and lethal complications from graft-versus-host disease (GVHD)…

Cannabinoids, the active ingredients found in Cannabis sativa, have been shown to exhibit a wide range of pharmacological properties. Studies from our laboratory and elsewhere have suggested that cannabinoids exhibit potent anti-inflammatory properties and therefore can be used to treat autoimmune and inflammatory diseases.

Cannabinoids have been shown to inhibit tumor cell growth and angiogenesis, suggesting their potential use in the treatment of gliomas, prostate and breast cancers, and malignancies of immune origin.

Δ9-Tetrahydrocannabinol (THC) is one of the most extensively investigated ingredients found in cannabis. THC activates both CB1 and CB2, thereby mediating both psychotropic and anti-inflammatory properties.

Inasmuch as our previous studies suggested that THC exhibits anti-inflammatory and immunosuppressive properties, we tested the possibility of its use in treating GVHD in a parent → F1 model. We hereby demonstrate for the first time that administration of THC during allogeneic transplantation can significantly suppress GVHD…

Our results demonstrate for the first time that targeting cannabinoid receptors may constitute a novel treatment modality against acute GVHD.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164345/

Cannabidiol for the Prevention of Graft-Versus-Host-Disease after Allogeneic Hematopoietic Cell Transplantation: Results of a Phase II Study.

“Graft-versus-host-disease (GVHD) is a major obstacle to successful allogeneic hematopoietic cell transplantation (alloHCT).

Cannabidiol (CBD), a non-psychotropic ingredient of Cannabis sativa possesses potent anti-inflammatory and immunosuppressive properties. We hypothesized that CBD may decrease GVHD incidence and severity after alloHCT…

The combination of CBD with standard GVHD prophylaxis is a safe and promising strategy to reduce the incidence of acute GVHD. A randomized double blind controlled study is warranted.”

http://www.ncbi.nlm.nih.gov/pubmed/26033282

Δ9-Tetrahydrocannabinol attenuates allogeneic host-versus-graft response and delays skin graft rejection through activation of cannabinoid receptor 1 and induction of myeloid-derived suppressor cells.

“Immune cells have been shown to express cannabinoid receptors and to produce endogenous ligands. Moreover, activation of cannabinoid receptors on immune cells has been shown to trigger potent immunosuppression.

Despite such studies, the role of cannabinoids in transplantation, specifically to prevent allograft rejection, has not, to our knowledge, been investigated previously. In the current study, we tested the effect of THC on the suppression of HvGD as well as rejection of skin allografts…

Together, our research shows, for the first time to our knowledge, that targeting cannabinoid receptors may provide a novel treatment modality to attenuate HvGD and prevent allograft rejection.”

http://www.ncbi.nlm.nih.gov/pubmed/26034207

Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor 2 Agonists Occurs Independently of the CB2 Receptor.

“Activation of CB2 has been demonstrated to induce directed immune cell migration. However, the ability of CB2 to act as a chemoattractant receptor in macrophages remains largely unexplored…

Taken together our results conclusively demonstrate that CB2 is not a chemoattractant receptor for murine macrophages. Furthermore we show for the first time that JWH133, HU308, L-759,656 and L-759,633 have off-target effects of functional consequence in primary cells and we believe that our findings have wide ranging implications for the entire cannabinoid field.”

http://www.ncbi.nlm.nih.gov/pubmed/26033291

A selective cannabinoid CB2 agonist attenuates damage and improves memory retention following stroke in mice.

“We have recently demonstrated that treatment with a cannabinoid CB2 agonist was protective in a mouse middle cerebral artery occlusion model of cerebral ischemia/reperfusion injury. The present study aimed to determine whether these protective effects of CB2 agonism would extend to a mouse photoinjury model of permanent ischemia and determine associated alterations in cognition and infarct size…

We conclude that CB2 activation is protective against cognitive deficits and tissue damage following permanent ischemia…”

http://www.ncbi.nlm.nih.gov/pubmed/26032254

http://www.thctotalhealthcare.com/category/stroke-2/

Cannabinoid-induced chemotaxis in bovine corneal epithelial cells.

Cannabinoid CB1 receptors are found in abundance in the vertebrate eye, with most tissue types expressing this receptor. However, the function of CB1 receptors in corneal epithelial cells (CECs) is poorly understood. Interestingly, the corneas of CB1 knockout mice heal more slowly after injury via a mechanism proposed to involve protein kinase B (Akt) activation, chemokinesis, and cell proliferation. The current study examined the role of cannabinoids in CEC migration in greater detail…

In summary, we find that CB1-based signaling machinery is present in bovine cornea and that activation of this system induces chemotaxis.”

http://www.ncbi.nlm.nih.gov/pubmed/26024113

http://medical-dictionary.thefreedictionary.com/chemotaxis

Comprehensive Review of Medicinal Marijuana, Cannabinoids, and Therapeutic Implications in Medicine and Headache: What a Long Strange Trip It’s Been ….

“The use of cannabis, or marijuana, for medicinal purposes is deeply rooted though history, dating back to ancient times. It once held a prominent position in the history of medicine, recommended by many eminent physicians for numerous diseases, particularly headache and migraine.

Through the decades, this plant has taken a fascinating journey from a legal and frequently prescribed status to illegal, driven by political and social factors rather than by science.

However, with an abundance of growing support for its multitude of medicinal uses, the misguided stigma of cannabis is fading, and there has been a dramatic push for legalizing medicinal cannabis and research.

Almost half of the United States has now legalized medicinal cannabis, several states have legalized recreational use, and others have legalized cannabidiol-only use, which is one of many therapeutic cannabinoids extracted from cannabis.

Physicians need to be educated on the history, pharmacology, clinical indications, and proper clinical use of cannabis, as patients will inevitably inquire about it for many diseases, including chronic pain and headache disorders for which there is some intriguing supportive evidence…

The literature suggests that the medicinal use of cannabis may have a therapeutic role for a multitude of diseases, particularly chronic pain disorders including headache.

Supporting literature suggests a role for medicinal cannabis and cannabinoids in several types of headache disorders including migraine and cluster headache, although it is primarily limited to case based, anecdotal, or laboratory-based scientific research.

Cannabis contains an extensive number of pharmacological and biochemical compounds, of which only a minority are understood, so many potential therapeutic uses likely remain undiscovered.

Cannabinoids appear to modulate and interact at many pathways inherent to migraine, triptan mechanisms ofaction, and opiate pathways, suggesting potential synergistic or similar benefits.

Modulation of the endocannabinoid system through agonism or antagonism of its receptors, targeting its metabolic pathways, or combining cannabinoids with other analgesics for synergistic effects, may provide the foundation for many new classes of medications.”

http://www.ncbi.nlm.nih.gov/pubmed/26015168

http://www.thctotalhealthcare.com/category/headachemigraine/