Role of the cannabinoid system in the transit of beta-amyloid across the blood-brain barrier.

“Emerging evidence suggests beta-amyloid (Aβ) deposition in the Alzheimer’s disease (AD) brain is the result of impaired clearance, due in part to diminished Aβ transport across the blood-brain barrier (BBB). Recently, modulation of the cannabinoid system was shown to reduce Aβ brain levels and improve cognitive behavior in AD animal models.

The purpose of the current studies was to investigate the role of the cannabinoid system in the clearance of Aβ across the BBB..

The current studies demonstrate, for the first time, a role for the cannabinoid system in the transit of Aβ across the BBB. These findings provide insight into the mechanism by which cannabinoid treatment reduces Aβ burden in the AD brain and offer additional evidence on the utility of this pathway as a treatment for AD.”

http://www.ncbi.nlm.nih.gov/pubmed/23831388

http://www.thctotalhealthcare.com/category/alzheimers-disease-ad/

Effect of an acute consumption of a moderate amount of ethanol on plasma endocannabinoid levels in humans.

“Animal experiments have shown that the endocannabinoid system (ECS) plays an important role in the regulation of ethanol intake. We investigated these effects in healthy volunteers who consumed a moderate amount of ethanol (red wine) and measured plasma levels of the endocannabinoids (ECs) anandamide (AEA) and 2-arachidonoylglycerol (2-AG) to test whether alcohol consumption influences the ECS in humans…

AEA, 2-AG and plasma glucose levels were significantly reduced after red wine consumption.

Water intake had no significant effect on AEA  but resulted in a gradual reduction in 2-AG concentrations…

The consumption of a moderate amount of red wine reduces plasma AEA and 2-AG concentrations, whereas the volume and caloric equivalent of the sugar containing, non-alcoholic liquid grape juice does not affect plasma ECs. Plain water has a differential effect on the ECS by reducing 2-AG concentrations without affecting AEA.”

http://www.ncbi.nlm.nih.gov/pubmed/22278319

Exercise, Manual Therapy, and the Endocannabinoid System: Why we’re all inherently potheads

ths-ecs-for-ths2-1024x753

“Have you ever heard of the digestive system? The lymphatic system? How about the muscular and nervous systems? Of course you have. Science has been studying them for years, making breakthroughs in our understanding of their inner workings that have lead to advancements benefited humanity in ways we now take for granted.

How about the endocannabinoid system? Have you heard of that?  If your profession has nothing to do with the biological sciences, I would expect the answer to be no (save a few individuals).  Don’t feel bad however, I have asked this question to many health and medical professionals that I have taught over the years and have received many a blank stare or look of confusion.

What if I were to tell you that this biological system permeates the entire human body with receptors located in skeletal muscle, the digestive tract, adipose (fat) tissue, and throughout the peripheral and central nervous systems (including the brain)? Again, you would question why this system is not studied, discussed, or even mentioned in most in physiology/health classes.

What if I were to tell you that the Endocannabinoid system (or ECS):

–   Helps regulate the central control of energy balance

–   Helps regulate metabolic processes (including storage)

–   Plays a key role in the maintenance of bone mass

–   Regulates intestinal motility

–   Promotes/regulates sleep

–   Is involved in neuromodulation and immunomodulation in the immune system

–   Is involved in modulating insulin sensitivity

–   Is involved in the regulation of pain signaling

–   And much more”

http://functionalanatomyblog.com/2014/03/27/exercise-manual-therapy-and-the-endocannabinoid-system-why-were-all-inherently-potheads/

“Exercise activates the endocannabinoid system.”  http://www.ncbi.nlm.nih.gov/pubmed/14625449

“Exercise-induced endocannabinoid signaling is modulated by intensity.”  http://www.ncbi.nlm.nih.gov/pubmed/22990628

“Effects of exercise stress on the endocannabinoid system in humans under field conditions.”   http://www.ncbi.nlm.nih.gov/pubmed/22101870

Control by the endogenous cannabinoid system of ras oncogene-dependent tumor growth.

“Because THC-like compounds are used to inhibit nausea and induce appetite in cancer patients, and anandamide appears to be an endogenous orexigenic mediator, the finding of possible antitumor effect for these substances might have a tremendous potential for therapeutic intervention in preventing the progression of cancer and, at the same time, in alleviating its symptoms.

Because multiple pathways are important for the proliferation of tumor cells and because combination therapies are often more effective than single-drug administration, cannabimimetic substances may complement other anticancer agents…”

http://www.fasebj.org/content/early/2001/12/02/fj.01-0320fje.long

“[Targeting the RAS signalling pathway in cancer].”  http://www.ncbi.nlm.nih.gov/pubmed/21715253

“Targeting the RAS oncogene.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3804031/

Therapeutic utility of cannabinoid receptor type 2 (CB(2)) selective agonists.

“The cannabinoid receptor type 2 (CB2) is a class A GPCR that was cloned in 1993 while looking for an alternative receptor that could explain the pharmacological properties of Δ(9)-tetrahydrocannabinol.

CB2 was identified among cDNAs based on its similarity in amino acid sequence to the CB1receptor and helped provide an explanation for the established effects of cannabinoids on the immune system.

In addition to the immune system, CB2 has widespread tissue expression and has been found in brain, peripheral nervous system, and gastrointestinal tract.

Several “mixed” cannabinoid agonists are currently in clinical use primarily for controlling pain, and it is believed that selective CB2 agonism may afford a superior analgesic agent devoid of the centrally mediated CB1 effects.

Thus, selective CB2 receptor agonists represent high value putative therapeutics for treating pain and other disease states. In this Perspective, we seek to provide a concise update of progress in the field.”

http://www.ncbi.nlm.nih.gov/pubmed/23865723

Activation of CB2 receptors as a potential therapeutic target for migraine: evaluation in an animal model.

“Experimental animal models of migraine have suggested the existence of interactions between the endocannabinoid system and pain mediation in migraine.

Extensive evidence has demonstrated a role for the cannabinoid-1 (CB1) receptor in antinociception.

…recent research suggests that also CB2 receptors, especially located outside the central nervous system, play a role in the perception of pain…

In this study we evaluated the role of CB2 receptors in two animal models of pain that may be relevant for migraine…

CONCLUSION:

These findings suggest that the pharmacological manipulation of the CB2 receptor may represent a potential therapeutic tool for the treatment of migraine.”

http://www.ncbi.nlm.nih.gov/pubmed/24636539

Cannabinoids for treatment of Alzheimer’s disease: moving toward the clinic.

“The limited effectiveness of current therapies against Alzheimer’s disease (AD) highlights the need for intensifying research efforts devoted to developing new agents for preventing or retarding the disease process. During the last few years, targeting the endogenous cannabinoid system has emerged as a potential therapeutic approach to treat Alzheimer.

The endocannabinoid system is composed by a number of cannabinoid receptors, including the well-characterized CB1 and CB2 receptors… Several findings indicate that the activation of both CB1 and CB2 receptors by natural or synthetic agonists, at non-psychoactive doses, have beneficial effects in Alzheimer experimental models…

Moreover, endocannabinoid signaling has been demonstrated to modulate numerous concomitant pathological processes, including neuroinflammation, excitotoxicity, mitochondrial dysfunction, and oxidative stress.

The present paper summarizes the main experimental studies demonstrating the polyvalent properties of cannabinoid compounds for the treatment of AD, which together encourage progress toward a clinical trial.”

http://www.ncbi.nlm.nih.gov/pubmed/24634659

“Considering the numerous complex pathological mechanisms involved in the progression of AD, treatments targeting a single causal or modifying factor offer limited benefit. Cannabinoids, however, exhibit pleiotropic activity, targeting in parallel several processes that play key roles in AD…”

Full: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942876/

“Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation…Our results indicate that cannabinoid receptors are important in the pathology of AD and that cannabinoids succeed in preventing the neurodegenerative process occurring in the disease.” http://www.jneurosci.org/content/25/8/1904.long

Therapeutic Potential of Cannabinoids in Schizophrenia.

“Increasing evidence suggests a close relationship between the endocannabinoid system and schizophrenia.

The endocannabinoid system comprises of two G protein-coupled receptors (the cannabinoid receptors 1 and 2 [CB1 and CB2] for marijuana’s psychoactive principle Δ9-tetrahydrocannabinol), their endogenous small lipid ligands (namely anandamide [AEA] and 2-arachidonoylglycerol [2-AG], also known as endocannabinoids), and proteins for endocannabinoid biosynthesis and degradation.

…antipsychotic compounds which manipulate this system may provide a novel therapeutic target for the treatment of schizophrenia.

The present article reviews current available knowledge on herbal, synthetic and endogenous cannabinoids with respect to the modulation of schizophrenic symptomatology.

Furthermore, this review will be highlighting the therapeutic potential of cannabinoid-related compounds and presenting some promising patents targeting potential treatment options for schizophrenia.”

http://www.ncbi.nlm.nih.gov/pubmed/24605939

Effects of cannabinoid drugs on the deficit of prepulse inhibition of startle in an animal model of schizophrenia: the SHR strain

“Clinical and neurobiological findings suggest that the cannabinoids and the endocannabinoid system may be implicated in the pathophysiology and treatment of schizophrenia.

Our results reinforce the role of the endocannabinoid system in the sensorimotor gating impairment related to schizophrenia, and point to cannabinoid drugs as potential therapeutic strategies.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3915876/

Care and Feeding of the Endocannabinoid System: A Systematic Review of Potential Clinical Interventions that Upregulate the Endocannabinoid System

An external file that holds a picture, illustration, etc.
Object name is pone.0089566.g002.jpg

“The “classic” endocannabinoid (eCB) system… An emerging literature documents the “eCB deficiency syndrome” as an etiology in migraine, fibromyalgia, irritable bowel syndrome, psychological disorders, and other conditions. We performed a systematic review of clinical interventions that enhance the eCB system—ways to upregulate cannabinoid receptors, increase ligand synthesis, or inhibit ligand degradation.

Evidence indicates that several classes of pharmaceuticals upregulate the eCB system, including analgesics (acetaminophen, non-steroidal anti-inflammatory drugs, opioids, glucocorticoids), antidepressants, antipsychotics, anxiolytics, and anticonvulsants.

Clinical interventions characterized as “complementary and alternative medicine” also upregulate the eCB system: massage and manipulation, acupuncture, dietary supplements, and herbal medicines. Lifestyle modification (diet, weight control, exercise, and the use of psychoactive substances—alcohol, tobacco, coffee, cannabis) also modulate the eCB system.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951193/#!po=4.79452

 

“Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Migraine, fibromyalgia, IBS and related conditions display common clinical, biochemical and pathophysiological patterns that suggest an underlying clinical endocannabinoid deficiency that may be suitably treated with cannabinoid medicines.”

 http://www.ncbi.nlm.nih.gov/pubmed/18404144