Dronabinol for supportive therapy in patients with malignant melanoma and liver metastases.

“Loss of appetite and nausea can reduce the quality of life of patients with malignant melanoma and liver metastases. Often established antiemetic drugs fail to bring relief. Tetrahydrocannabinol (THC, Marinol), which is the active agent of Indian hemp, has been used successfully in this situation for other malignant tumors.

PATIENTS AND METHODS:

We treated 7 patients with hematogenous metastatic melanoma and liver metastases suffering from extensive loss of appetite and nausea supportively with dronabinol (Marinol. All of these patients had previously received standard antiemetic therapy without adequate relief. Dronabinol is a synthetic Delta-tetrahydrocannabinol. The drug was administered in capsule form. We evaluated the palliative effects of dronabinol with a special patient evaluation form, which was filled out at the beginning of the therapy and again after 4 weeks.

RESULTS:

The majority of patients described a significant increase in appetite and decrease in nausea. These effects remained for some weeks, but then decreased as metastases progressed and the general condition worsened. All of the patients experienced slight to moderate dizziness, but it was not sufficiently troubling to cause interruption or termination of therapy.

CONCLUSION:

Loss of appetite and nausea due to liver metastases of malignant melanoma can be treated in individual cases supportively with Dronabinol.”

http://www.ncbi.nlm.nih.gov/pubmed/16408219

Peripheral Cannabinoids Attenuate Carcinoma Induced Nociception in Mice

“Cancer pain remains poorly understood and there are no effective therapies…

 We tested whether a local CBr2 agonist produces antinociception. Our findings suggest that a peripheral CBr2 agonist could provide relief for cancer patients. Cannabinoids also potentiate the analgesic effects of morphine and prevent tolerance.

These desirable effects of cannabinoids show promise for management of cancer pain and may lead to improved analgesic therapy.

These findings support the suggestion that cannabinoids are capable of producing antinociception in carcinoma-induced pain.”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771220/

Cannabidiol bioavailability after nasal and transdermal application: effect of permeation enhancers.

“The nonpsychoactive cannabinoid, cannabidiol (CBD), has great potential for the treatment of chronic and ‘breakthrough’ pain that may occur in certain conditions like cancer. To fulfill this goal, suitable noninvasive drug delivery systems need to be developed for CBD. Chronic pain relief can be best achieved through the transdermal route, whereas ‘breakthrough’ pain can be best alleviated with intranasal (IN) delivery. Combining IN and transdermal delivery for CBD may serve to provide patient needs-driven treatment in the form of a nonaddictive nonopioid therapy.

CONCLUSION:

The results of this study indicated that CBD could be successfully delivered through the IN and transdermal routes.”

http://www.ncbi.nlm.nih.gov/pubmed/20545522

Inhibition of basal and ultraviolet B-induced melanogenesis by cannabinoid CB(1) receptors: a keratinocyte-dependent effect.

“Ultraviolet radiation is the major environmental insult to the skin and stimulates the synthesis of melanin in melanocytes, which then distribute it to the neighboring keratinocytes where it confers photo-protection. Skin color results from the paracrine interaction between these two cell types. Recent studies suggest that endocannabinoids are potential mediators in the skin. Here, we investigated whether cannabinoid drugs play a role in melanogenesis and if ultraviolet radiation modifies the cutaneous endocannabinoid system.

We provide evidence that human melanoma cells (SK-mel-1) express CB(1) receptors… 

Furthermore, ultraviolet-B radiation increased endocannabinoids levels only in keratinocytes, whereas CB(1) cannabinoid receptor expression was up-regulated only in melanoma cells.

Our results collectively suggest that ultraviolet radiation activates paracrine CB(1)-mediated endocannabinoid signaling to negatively regulate melanin synthesis.

The endocannabinoid system in the skin may be a possible target for future therapies in pigmentary disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/21298280

The association of N-palmitoylethanolamine with the FAAH inhibitor URB597 impairs melanoma growth through a supra-additive action.

“The incidence of melanoma is considerably increasing worldwide. Frequent failing of classical treatments led to development of novel therapeutic strategies aiming at managing advanced forms of this skin cancer. Additionally, the implication of the endocannabinoid system in malignancy is actively investigated…

CONCLUSIONS:

This study suggests the interest of targeting the endocannabinoid system in the management of skin cancer and underlines the advantage of associating endocannabinoids with enzymatic hydrolysis inhibitors.

This may contribute to the improvement of long-term palliation or cure of melanoma.”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364151/

The antimitogenic effect of the cannabinoid receptor agonist WIN55212-2 on human melanoma cells is mediated by the membrane lipid raft.

“Here are reported the antiproliferative effects of the cannabinoid agonist WIN upon human melanoma cells expressing mRNA and protein for both CB1 and CB2 receptors.

While WIN exerted antimitogenic effects, selective CB1 or CB2 agonists were unable to reproduce such effects and selective CB1 and CB2 antagonists did not inhibit WIN-induced cell death. Cells treated with WIN, preincubated with the lipid raft disruptor methylcyclodestrin, were rescued from death. WIN induced activation of caspases and phosphorylation of ERK that were attenuated in cultures treated with methylcyclodestrin.

 Membrane lipid raft complex-mediated antimitogenic effect of WIN in melanoma could represents a potential targets for a melanoma treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/21807457

Cannabinoids for Cancer Treatment: Progress and Promise

Cancer Research: 68 (2)

“Cannabinoid refers to a group of chemicals naturally found in the marijuana plant Cannabis sativa L. and includes compounds that are either structurally or pharmacologically similar to Δ(9)-tetrahydrocannabinol or those that bind to the cannabinoid receptors. Although anticancer effects of cannabinoids were shown as early as 1975 in Lewis lung carcinoma, renewed interest was generated little after the discovery of the cannabinoid system and cloning of the specific cannabinoid receptors.

Cannabinoids are a class of pharmacologic compounds that offer potential applications as antitumor drugs, based on the ability of some members of this class to limit inflammation, cell proliferation, and cell survival. In particular, emerging evidence suggests that agonists of cannabinoid receptors expressed by tumor cells may offer a novel strategy to treat cancer. Here, we review recent work that raises interest in the development and exploration of potent, nontoxic, and nonhabit forming cannabinoids for cancer therapy.”

Full Text: http://cancerres.aacrjournals.org/content/68/2/339.long

US Investigators Praise Cannabinoids As Chemo Treatment

“Cannabinoids inhibit cancer cell proliferation and should be clinically tested as chemotherapeutic agents, according to a review published in the January issue of the journal Cancer Research.

Investigators at the University of Wisconsin School of Medicine and Public Health reported that the administration of cannabinoids halts the spread of a wide range of cancers, including brain cancer, prostate cancer, breast cancer, lung cancer, skin cancer, pancreatic cancer, and lymphoma.

Researchers suggested that cannabinoids may offer significant advantages over standard chemotherapy treatments because the compounds are both non-toxic and can uniquely target malignant cells while ignoring healthy ones.

“Cannabinoids … offer potential applications as anti-tumor drugs, based on the ability of some members of this class to limit inflammation, cell proliferation, and cell survival,” authors concluded. “[T]here is overwhelming evidence to suggest that cannabinoids can be explored as chemotherapeutic agents for the treatment of cancer.””

Read more: http://norml.org/news/2008/01/31/us-investigators-praise-cannabinoids-as-chemo-treatment

Cannabinoids As Cancer Hope

NORML - Working to reform marijuana laws

by Paul Armentano
Senior Policy Analyst
NORML | NORML Foundation

““Cannabinoids possess … anticancer activity [and may] possibly represent a new class of anti-cancer drugs that retard cancer growth, inhibit angiogenesis (the formation of new blood vessels) and the metastatic spreading of cancer cells.” So concludes a comprehensive review published in the October 2005 issue of the scientific journal Mini-Reviews in Medicinal Chemistry.

Not familiar with the emerging body of research touting cannabis’ ability to stave the spread of certain types of cancers? You’re not alone.

For over 30 years, US politicians and bureaucrats have systematically turned a blind eye to scientific research indicating that marijuana may play a role in cancer prevention — a finding that was first documented in 1974. That year, a research team at the Medical College of Virginia (acting at the behest of the federal government) discovered that cannabis inhibited malignant tumor cell growth in culture and in mice. According to the study’s results, reported nationally in an Aug. 18, 1974, Washington Post newspaper feature, administration of marijuana’s primary cannabinoid THC, “slowed the growth of lung cancers, breast cancers and a virus-induced leukemia in laboratory mice, and prolonged their lives by as much as 36 percent.”

Despite these favorable preclinical findings, US government officials dismissed the study (which was eventually published in the Journal of the National Cancer Institute in 1975), and refused to fund any follow-up research until conducting a similar — though secret — clinical trial in the mid-1990s. That study, conducted by the US National Toxicology Program to the tune of $2 million concluded that mice and rats administered high doses of THC over long periods experienced greater protection against malignant tumors than untreated controls.

Rather than publicize their findings, government researchers once again shelved the results, which only came to light after a draft copy of its findings were leaked in 1997 to a medical journal, which in turn forwarded the story to the national media.

Nevertheless, in the decade since the completion of the National Toxicology trial, the U.S. government has yet to encourage or fund additional, follow up studies examining the cannabinoids’ potential to protect against the spread cancerous tumors.

Fortunately, scientists overseas have generously picked up where US researchers so abruptly left off. In 1998, a research team at Madrid’s Complutense University discovered that THC can selectively induce apoptosis (program cell death) in brain tumor cells without negatively impacting the surrounding healthy cells. Then in 2000, they reported in the journal Nature Medicine that injections of synthetic THC eradicated malignant gliomas (brain tumors) in one-third of treated rats, and prolonged life in another third by six weeks.

In 2003, researchers at the University of Milan in Naples, Italy, reported that non-psychoactive compounds in marijuana inhibited the growth of glioma cells in a dose dependent manner and selectively targeted and killed malignant cancer cells.

The following year, researchers reported in the journal of the American Association for Cancer Research that marijuana’s constituents inhibited the spread of brain cancer in human tumor biopsies. In a related development, a research team from the University of South Florida further noted that THC can also selectively inhibit the activation and replication of gamma herpes viruses. The viruses, which can lie dormant for years within white blood cells before becoming active and spreading to other cells, are thought to increase one’s chances of developing cancers such as Karposis Sarcoma, Burkitts lymphoma, and Hodgkins disease.

More recently, investigators published pre-clinical findings demonstrating that cannabinoids may play a role in inhibiting cell growth of colectoral cancer, skin carcinoma, breast cancer, and prostate cancer, among other conditions. When investigators compared the efficacy of natural cannabinoids to that of a synthetic agonist, THC proved far more beneficial – selectively decreasing the proliferation of malignant cells and inducing apoptosis more rapidly than its synthetic alternative while simultaneously leaving healthy cells unscathed.

Nevertheless, US politicians have been little swayed by these results, and remain steadfastly opposed to the notion of sponsoring – or even acknowledging – this growing body clinical research, preferring instead to promote the unfounded notion that cannabis use causes cancer. Until this bias changes, expect the bulk of research investigating the use of cannabinoids as anticancer agents to remain overseas and, regrettably, overlooked in the public discourse.”

http://norml.org/component/zoo/category/cannabinoids-as-cancer-hope

Cannabinoids and omega-3/6 endocannabinoids as cell death and anticancer modulators.

Cover image

“Cannabinoids-endocannaboids are possible preventatives of common diseases including cancers. Cannabinoid receptors (CB(½), TRPV1) are central components of the system. Many disease-ameliorating effects of cannabinoids-endocannabinoids are receptor mediated, but many are not, indicating non-CBR signaling pathways.

Cannabinoids-endocannabinoids are anti-inflammatory, anti-proliferative, anti-invasive, anti-metastatic and pro-apoptotic in most cancers, in vitro and in vivo in animals.

They signal through p38, MAPK, JUN, PI3, AKT, ceramide, caspases, MMPs, PPARs, VEGF, NF-κB, p8, CHOP, TRB3 and pro-apoptotic oncogenes (p53,p21 waf1/cip1) to induce cell cycle arrest, autophagy, apoptosis and tumour inhibition. Paradoxically they are pro-proliferative and anti-apoptotic in some cancers. Differences in receptor expression and concentrations of cannabinoids in cancer and immune cells can elicit anti- or pro-cancer effects through different signal cascades (p38MAPK or PI3/AKT).

Similarities between effects of cannabinoids-endocannabinoids, omega-3 LCPUFA and CLAs/CLnAs as anti-inflammatory, antiangiogenic, anti-invasive anti-cancer agents indicate common signaling pathways.

Evidence in vivo and in vitro shows EPA and DHA can form endocannabinoids that: (i) are ligands for CB(½) receptors and possibly TRPV-1, (ii) have non-receptor mediated bioactivity, (iii) induce cell cycle arrest, (iii) increase autophagy and apoptosis, and (iv) augment chemotherapeutic actions in vitro. They can also form bioactive, eicosanoid-like products that appear to be non-CBR ligands but have effects on PPARs and NF-kB transcription factors. The use of cannabinoids in cancer treatment is currently limited to chemo- and radio-therapy-associated nausea and cancer-associated pain apart from one trial on brain tumours in patients. Further clinical studies are urgently required to determine the true potential of these intriguing, low toxicity compounds in cancer therapy. Particularly in view of their synergistic effects with chemotherapeutic agents similar to that observed for n-3 LCPUFA.”  https://www.ncbi.nlm.nih.gov/pubmed/23103355

http://www.sciencedirect.com/science/article/pii/S0163782712000537