“Nowadays, therapeutic indications for cannabinoids, specifically Δ9-tetrahydrocannabinol (THC) and Cannabidiol (CBD) are widening. However, the oral consumption of the molecules is very limited due to their highly lipophilic nature that leads to poor solubility at the aqueous environment. Additionally, THC and CBD are prone to extensive first pass mechanisms. These absorption obstacles render the molecules with low and variable oral bioavailability. To overcome these limitations we designed and developed the advanced pro-nanolipospheres (PNL) formulation. The PNL delivery system is comprised of a medium chain triglyceride, surfactants, a co-solvent and the unique addition of a natural absorption enhancer: piperine. Piperine was selected due to its distinctive inhibitory properties affecting both Phase I and Phase II metabolism. This constellation self emulsifies into nano particles that entrap the cannabinoids and the piperine in their core and thus improve their solubility while piperine and the other PNL excipients inhibit their intestinal metabolism. Another clear advantage of the formulation is its composition of materials approved for human consumption. The safe nature of the excipients enabled their direct evaluation in humans. In order to evaluate the pharmacokinetic profile of the THC-CBD-piperine-PNL formulation, a two-way crossover, single administration clinical study was conducted. The trial comprised of 9 healthy volunteers under fasted conditions. Each subject received a THC-CBD (1:1, 10mg) piperine (20mg)-PNL filled capsule and an equivalent dose of the oromucosal spray Sativex® with a washout period in between treatments. Single oral administration of the piperine-PNL formulation resulted in a 3-fold increase in Cmax and a 1.5-fold increase in AUC for THC when compared to Sativex®. For CBD, a 4-fold increase in Cmax and a 2.2-fold increase in AUC was observed. These findings demonstrate the potential this formulation has in serving as a standardized oral cannabinoid formulation. Moreover, the concept of improving oral bioavailability described here, can pave the way for other potential lipophilic active compounds requiring enhancement of their oral bioavailability.” https://www.ncbi.nlm.nih.gov/pubmed/28890215 http://www.sciencedirect.com/science/article/pii/S016836591730843X]]>
Category Archives: THC (Delta-9-Tetrahydrocannabinol)
Distinct roles of neuronal and microglial CB2 cannabinoid receptors in the mouse hippocampus.
“The effects of cannabinoids are primarily mediated by type-1 cannabinoid receptors in the brain and type-2 cannabinoid receptors (CB2Rs) in the peripheral immune system. However, recent evidence demonstrates that CB2Rs are also expressed in the brain and implicated in neuropsychiatric effects. Diverse types of cells in various regions in the brain express CB2Rs but the cellular loci of CB2Rs that induce specific behavioral effects have not been determined. To manipulate CB2R expression in specific types of cells in the dorsal hippocampus of adult mice, we used Cre-dependent overexpression and CRISPR-Cas9 genome editing techniques in combination with adeno-associated viruses and transgenic mice. Elevation and disruption of CB2R expression in microglia in the CA1 area increased and decreased, respectively, contextual fear memory. In CA1 pyramidal neurons, disruption of CB2R expression enhanced spatial working memory, whereas their overexpression reduced anxiety levels assessed as an increase in the exploration time in the central area of open field. Interneuronal CB2Rs were not involved in the modulation of cognitive or emotional behaviors tested in this study. The targeted manipulation of CB2R expression in pyramidal neurons and microglia suggests that CB2Rs in different types of cells in the mature hippocampus play distinct roles in the regulation of memory and anxiety.” https://www.ncbi.nlm.nih.gov/pubmed/28888955 http://www.sciencedirect.com/science/article/pii/S0306452217306292]]>
Treatment of human spasticity with delta 9-tetrahydrocannabinol.
“Spasticity is a common neurologic condition in patients with multiple sclerosis, stroke, cerebral palsy or an injured spinal cord. Animal studies suggest that THC has an inhibitory effect on polysynaptic reflexes.
Some spastic patients claim improvement after inhaling cannabis. We tested muscle tone, reflexes, strength and performed EMGs before and after double-blinded oral administration of either 10 or 5 mg THC or placebo.
10 mg THC significantly reduced spasticity by clinical measurement (P less than 0.01).
Responses varied, but benefit was seen in three of three patients with “tonic spasms.””
Medical Marijuana Helps Kids With Cerebral Palsy, Israeli Study Finds
“Medical marijuana significantly improved the condition of children suffering from cerebral palsy, a study by Wolfson Medical Center near Tel Aviv has found. According to the interim findings, treatment with cannabis oil reduced the disorder’s symptoms and improved the children’s motor skills. It also improved the kids’ sleep quality, bowel movements and general mood. “The THC’s effect is especially relevant to motor function, whether it’s Parkinson’s disease or other motor symptoms,” says Bar-Lev Schleider. “But the THC is also responsible for the psycho-active effect, so we picked a variety that also has a lot of CBD, which moderates the euphoric effect.” One group of children was treated with oil with a 1:6 ratio of THC to CBD, while for another group the ratio was 1:20. “According to the interim findings both oils are effective,” says Bar-Lev Schleider.” http://www.haaretz.com/israel-news/.premium-1.811010]]>
Cannabis constituent synergy in a mouse neuropathic pain model.
“The
“Insufficient management of cancer-associated chronic and neuropathic pain adversely affects patient quality of life. Patients who do not respond well to opioid analgesics, or have severe side effects from the use of traditional analgesics are in need of alternative therapeutic op-tions.
Anecdotal evidence suggests that medical cannabis has potential to effectively manage pain in this patient population.
This review presents a selection of representative clinical studies, from small pilot studies conducted in 1975, to double-blind placebo-controlled trials conducted in 2014 that evaluated the efficacy of
“Introduction: The endocannabinoid system (ECS) plays an important role in food reward. For example, in humans, liking of palatable foods is assumed to be modulated by endocannabinoid activity. Studies in rodents suggest that the ECS also plays a role in sweet taste intensity perception, but it is unknown to what extent this can be extrapolated to humans. Therefore, this study aimed at elucidating whether Δ9-tetrahydrocannabinol (THC) or cannabidiol (CBD) affects sweet taste intensity perception and liking in humans, potentially resulting in alterations in food preferences.
Results: Inhalation of the Cannabis preparations did not affect sweet taste intensity perception and liking, ranking order, or ad libitum consumption of the favorite drink. In addition, food preferences were not influenced by the interventions. Reported fullness was lower, whereas desire to eat was higher throughout the THC compared to the CBD condition.
Conclusions: These results suggest that administration of Cannabis preparations at the low doses tested does not affect sweet taste intensity perception and liking, nor does it influence food preferences in humans.”