Opioid withdrawal suppression efficacy of oral dronabinol in opioid dependent humans.

:”The cannabinoid (CB) system is a rational novel target for treating opioid dependence, a significant public health problem around the world. This proof-of-concept study examined the potential efficacy of a CB1 receptor partial agonist, dronabinol, in relieving signs and symptoms of opioid withdrawal.

CONCLUSION:

CB1 receptor activation is a reasonable strategy to pursue for the treatment of opioid withdrawal; however, dronabinol is not a likely candidate given its modest withdrawal suppression effects of limited duration and previously reported tachycardia during opioid withdrawal.”

http://www.ncbi.nlm.nih.gov/pubmed/27234658

Can Cannabinoids Modulate Fibrotic Progression in Systemic Sclerosis?

“Since ancient times, plants have been used for therapeutic purposes.

Cannabis sativa has been widely used as a medicinal herb by Ayurveda and traditional Chinese medicine for centuries.

According to our in vitro and in vivo experimental models, cannabinoids are able to modulate fibrosis.

The exact mechanism underlying this effect requires further investigation, but it seems to go beyond their anti-inflammatory and immunomodulatory properties.

Based on the above observations, we aimed to investigate the role of cannabinoids in systemic sclerosis (SSc), an autoimmune disease characterized by diffuse fibrosis.

Since preclinical data on cannabinoids show their capability to modulate fibrosis, inflammation and vasodilatation, these molecules could be ideal drugs for targeting SSc.”

http://www.ima.org.il/FilesUpload/IMAJ/0/193/96907.pdf

Drug vaping applied to cannabis: Is “Cannavaping” a therapeutic alternative to marijuana?

“Therapeutic cannabis administration is increasingly used in Western countries due to its positive role in several pathologies. Dronabinol or tetrahydrocannabinol (THC) pills, ethanolic cannabis tinctures, oromucosal sprays or table vaporizing devices are available but other cannabinoid forms can be used.

Inspired by the illegal practice of dabbing of butane hashish oil (BHO), cannabinoids from cannabis were extracted with butane gas, and the resulting concentrate (BHO) was atomized with specific vaporizing devices. The efficiency of “cannavaping,” defined as the “vaping” of liquid refills for e-cigarettes enriched with cannabinoids, including BHO, was studied as an alternative route of administration for therapeutic cannabinoids.

The results showed that illegal cannavaping would be subjected to marginal development due to the poor solubility of BHO in commercial liquid refills (especially those with high glycerin content). This prevents the manufacture of liquid refills with high BHO concentrations adopted by most recreational users of cannabis to feel the psychoactive effects more rapidly and extensively.

Conversely, “therapeutic cannavaping” could be an efficient route for cannabinoids administration because less concentrated cannabinoids-enriched liquid refills are required. However, the electronic device marketed for therapeutic cannavaping should be carefully designed to minimize potential overheating and contaminant generation.”

http://www.ncbi.nlm.nih.gov/pubmed/27228348

The effect of cannabinoids on dinitrofluorobenzene-induced experimental asthma in mice.

“Cannabinoids have anti-inflammatory effects and can produce bronchodilation in the airways.

We have investigated the effects of cannabinoids on tracheal hyperreactivity and airway inflammation in dinitrofluorobenzene (DNFB)-induced experimental non-atopic asthma in mice.

These results show that cannabinoid CB1 receptor agonist can prevent tracheal hyperreactivity to 5-HT in DNFB-induced non-atopic asthma in mice.”

http://www.ncbi.nlm.nih.gov/pubmed/27216000

Effects of Delta-9-Tetrahydrocannabinol and Cannabidiol on Cisplatin-Induced Neuropathy in Mice.

“Sativex, a cannabinoid extract with a 1 : 1 ratio of tetrahydocannabinol and cannabidiol, has been shown to alleviate neuropathic pain associated with chemotherapy.

This research examined whether tetrahydocannabinol or cannabidiol alone could attenuate or prevent cisplatin-induced tactile allodynia.

These data demonstrate that each of the major constituents of Sativex alone can achieve analgesic effects against cisplatin neuropathy.”

http://www.ncbi.nlm.nih.gov/pubmed/27214593

Functional selectivity of CB2 cannabinoid receptor ligands at a canonical and non-canonical pathway.

“The CB2 cannabinoid receptor remains a tantalizing, but unrealized therapeutic target. CB2 receptor ligands belong to varied structural classes and display extreme functional selectivity. Here we have screened diverse CB2 receptor ligands at canonical (inhibition of adenylyl cyclase) and non-canonical (arrestin recruitment) pathways. The non-classical cannabinoid, CP55940 was the most potent agonist for both pathways, while the classical cannabinoid ligand JWH133 was the most efficacious agonist amongst all the ligands profiled in cyclase assays. In the cyclase assay, other classical cannabinoids showed little (Δ9THC, KM233) to no efficacy (L759633 and L759656). Most aminoalkylindoles including WIN55212-2 were moderate efficacy agonists. The cannabilactone AM1710 was equi-efficacious to CP55940 to inhibit adenylyl cyclase, albeit with lower potency. In the arrestin recruitment assays, all classical cannabinoid ligands failed to recruit arrestins, indicating a bias towards G protein coupling for this class of compound. All aminoalkylindoles tested, except for WIN55212-2 and UR144, failed to recruit arrestin. WIN55212-2 was a low efficacy agonist for arrestin recruitment, while UR144 was arrestin biased with no significant inhibition of cyclase. Endocannabinoids were G protein biased with no arrestin recruitment. The diarylpyrazole antagonist, SR144528 was an inverse agonist in cyclase and arrestin recruitment assays while the aminoalkylindole AM630 and carboxamide JTE907 were inverse agonists in cyclase but low efficacy agonists in arrestin recruitment assays. Thus CB2 receptor ligands display strong and varied functional selectivity at both pathways. Therefore extreme care must be exercised when using these compounds to infer the role of CB2 receptors in vivo.”

http://www.ncbi.nlm.nih.gov/pubmed/27194477

Modulation of breast cancer cell viability by a cannabinoid receptor 2 agonist, JWH-015, is calcium dependent

Logo of bctt

“Breast cancer is the leading cause of cancer-related deaths among women aged 34–50 worldwide, and is the most commonly diagnosed metastasizing tumor in women of all ages. Despite advances in understanding breast cancer as a disease, there remains a critical need for novel disease-modifying therapeutics.

Nonspecific cannabinoids, cannabinoid receptor 2 (CB2)-selective, as well as cannabinoid receptor 1 (CB1)-selective compounds have yielded similar antitumor results in several tumor models. The lack of neuronal expression of CB2 receptors precludes CB2 selective compounds from inducing the psychotropic effects that typically accompany CB1 activation.

 Our group and others have shown that CB2 agonists displaying selectivity for the CB2 receptor can decrease tumor cell viability and significantly attenuate cancer-induced bone pain without displaying psychoactive or addictive properties.

…antitumor effects of cannabinoids have been demonstrated in a variety of tumor models…

The antiproliferative effects of a CB2 agonist along with our previous work demonstrating significant efficacy in inhibiting bone cancer pain and slowing bone loss in a murine model of advanced breast cancer strongly suggest that CB2 agonists should be investigated in humans as adjunct therapy for advanced stages of breast cancer.

 Cannabinoid compounds, both nonspecific as well as agonists selective for either cannabinoid receptor 1 (CB1) or cannabinoid receptor 2 (CB2), have been shown to modulate the tumor microenvironment by inducing apoptosis in tumor cells in several model systems.
The results of this work characterize the actions of a CB2-selective agonist on breast cancer cells in a syngeneic murine model representing how a clinical presentation of cancer progression and metastasis may be significantly modulated by a G-protein-coupled receptor.
Several groups have shown that both nonselective cannabinoid and CB2-specific compounds decrease breast cancer viability in vitro and in vivo: Δ9-tetrahydrocannabinol and CB2-selective agonist, JWH-133, have been demonstrated to exert considerable antitumoral effects…”

Interactions between cannabinoid receptor agonists and mu opioid receptor agonists in rhesus monkeys discriminating fentanyl.

“Cannabinoid receptor agonists such as delta-9-tetrahydrocannabinol (Δ9-THC) enhance some (antinociceptive) but not other (positive reinforcing) effects of mu opioid receptor agonists, suggesting that cannabinoids might be combined with opioids to treat pain without increasing, and possibly decreasing, abuse.

These data indicate that the discriminative stimulus effects of nalbuphine are more sensitive to attenuation by cannabinoids than those of fentanyl. That the discriminative stimulus effects of some opioids are more susceptible to modification by drugs from other classes has implications for developing maximally effective therapeutic drug mixtures with reduced abuse liability.”

http://www.ncbi.nlm.nih.gov/pubmed/27184925

Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.).

“The present study focused on inhibitory activity of freshly extracted essential oils from three legal (THC<0.2% w/v) hemp varieties (Carmagnola, Fibranova and Futura) on microbial growth.

The effect of different sowing times on oil composition and biological activity was also evaluated. Essential oils were distilled and then characterized through the gas chromatography and gas chromatography-mass spectrometry. Thereafter, the oils were compared to standard reagents on a broad range inhibition of microbial growth via minimum inhibitory concentration (MIC) assay. Microbial strains were divided into three groups: i) Gram (+) bacteria, which regard to food-borne pathogens or gastrointestinal bacteria, ii) Gram (-) bacteria and iii) yeasts, both being involved in plant interactions.

The results showed that essential oils of industrial hemp can significantly inhibit the microbial growth, to an extent depending on variety and sowing time.

It can be concluded that essential oils of industrial hemp, especially those of Futura, may have interesting applications to control spoilage and food-borne pathogens and phytopathogens microorganisms.”

http://www.ncbi.nlm.nih.gov/pubmed/19969046

Expression analysis of cannabinoid receptors 1 and 2 in B cells during pregnancy and their role on cytokine production.

“The endocannabinoid system consists in a family of lipids that binds to and activates cannabinoid receptors. There are two receptors so far described, the cannabinoid receptor 1 (CB1) and 2 (CB2).

In the context of pregnancy, the endocannabinoid system was shown participates in different key aspects of reproductive events. B-lymphocytes are pleiotropic cells belonging to the adaptive arm of the immune system. Besides immunoglobulin production, B-lymphocytes were recently shown to be actively involved in antigen presentation as well as cytokine production, thus playing a central role in immunity.

In this study we first aimed to characterize the expression of CB1 and CB2 receptors in B cells during pregnancy and then analyze the impact of their activation in term of cytokine production by B cells from pregnant and non-pregnant mice.

We observed that the expression of CB1 and CB2 receptors in B-lymphocytes is differentially regulated during pregnancy. While CB2 expression is down regulated CB1 is augmented in B-lymphocytes of pregnant mice.

Additionally, the treatment of activated B-lymphocytes with specific CB1 and CB2 agonists, showed a different response in term of cytokine production. Particularly, CB1 against boosted the production of the anti-inflammatory cytokine IL-10 by activated B-lymphocytes from pregnant mice.”

http://www.ncbi.nlm.nih.gov/pubmed/27163857