Gene duplication and divergence affecting drug content in Cannabis sativa.

“Cannabis sativa is an economically important source of durable fibers, nutritious seeds, and psychoactive drugs but few economic plants are so poorly understood genetically.

Marijuana and hemp were crossed to evaluate competing models of cannabinoid inheritance and to explain the predominance of tetrahydrocannabinolic acid (THCA) in marijuana compared with cannabidiolic acid (CBDA) in hemp.

Individuals in the resulting F2population were assessed for differential expression of cannabinoid synthase genes and were used in linkage mapping. Genetic markers associated with divergent cannabinoid phenotypes were identified.

Although phenotypic segregation and a major quantitative trait locus (QTL) for the THCA/CBDA ratio were consistent with a simple model of codominant alleles at a single locus, the diversity of THCA and CBDA synthase sequences observed in the mapping population, the position of enzyme coding loci on the map, and patterns of expression suggest multiple linked loci.

Phylogenetic analysis further suggests a history of duplication and divergence affecting drug content.

Marijuana is distinguished from hemp by a nonfunctional CBDA synthase that appears to have been positively selected to enhance psychoactivity. An unlinked QTL for cannabinoid quantity may also have played a role in the recent escalation of drug potency.”

http://www.ncbi.nlm.nih.gov/pubmed/26189495

The effects of dronabinol during detoxification and the initiation of treatment with extended release naltrexone.

“Evidence suggests that the cannabinoid system is involved in the maintenance of opioid dependence. We examined whether dronabinol, a cannabinoid receptor type 1 partial agonist, reduces opioid withdrawal and increases retention in treatment with extended release naltrexone (XR-naltrexone).

CONCLUSION:

Dronabinol reduced the severity of opiate withdrawal during acute detoxification but had no effect on rates of XR-naltrexone treatment induction and retention. Participants who elected to smoke marijuana during the trial were more likely to complete treatment regardless of treatment group assignment.”

http://www.ncbi.nlm.nih.gov/pubmed/26187456

Phytocannabinoids for Cancer Therapeutics: Recent Updates and Future Prospects.

“Phytocannabinoids (pCBs) are lipid-soluble phytochemicals present in the plant, Cannabis sativa L. and non-cannabis plants which have a long history in traditional and recreational medicine.

The plant and constituents were central in the discovery of the endocannabinoid system, the most new target for drug discovery.

The endocannabinoid system includes two G protein-coupled receptors; the cannabinoid receptors-1 and -2 (CB1 and CB2) for marijuana’s psychoactive principle ∆(9)-tetrahydrocannabinol (∆9-THC), their endogenous small lipid ligands; namely anandamide (AEA) and 2-arachidonoylglycerol (2-AG), also known as endocannabinoids and the proteins for endocannabinoid biosynthesis and degradation such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL).

The endocannabinoid system has been suggested as a pro-homeostatic and pleiotropic signaling system activated in a time- and tissue-specific way during pathological conditions including cancer.

Targeting the CB1 receptors become a concern because of adverse psychotropic reactions. Hence, targeting the CB2 receptors or the endocannabinoid metabolizing enzyme by phytocannabinoids obtained from non-cannabis plant lacking psychotropic adverse reactions has garnered interest in drug discovery.

These pCBs derived from plants beyond cannabis appear safe and effective with a wider access and availability.

In recent years, several pCBs derived other than non-cannabinoid plants have been reported to bind to and functionally interact with cannabinoid receptors and appear promising candidate for drug development in cancer therapeutics.

Several of them also target the endocannabinoid metabolizing enzymes that control endocannabinoid levels. In this article, we summarize, critically discuss the updates and future prospects of the pCBs as novel and promising candidates for cancer therapeutics.”

http://www.ncbi.nlm.nih.gov/pubmed/26179998

http://www.thctotalhealthcare.com/category/cancer/

Selective Reduction of THC’s Unwanted Effects through Serotonin Receptor Inhibition

“While recreational marijuana users may seek the full range of its effects, broad medical use of THC—including for pain, nausea, and anxiety—is hindered by them.

In a new study, Xavier Viñals, Estefania Moreno, Peter McCormick, Rafael Maldonado, Patricia Robledo, and colleagues demonstrate that the cognitive effects of THC are triggered by a pathway separate from some of its other effects.

That pathway involves both a cannabinoid receptor and a serotonin receptor, and when this pathway is blocked, THC can still exert several beneficial effects, including analgesia, while avoiding impairment of memory.

The results of this study are potentially highly important, in that they identify a way to reduce some of what are usually thought of as THC’s unwanted side effects when used for medicinal purposes while maintaining several important benefits, including pain relief.

The widening acceptance of a role for THC in medicine may be accelerated by the option to reduce those side effects by selective pharmacological disruption or blocking of the heteromer.”

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002193

The dual effects of delta(9)-tetrahydrocannabinol on cholangiocarcinoma cells: anti-invasion activity at low concentration and apoptosis induction at high concentration.

“Currently, only gemcitabine plus platinum demonstrates the considerable activity for cholangiocarcinoma.

The anticancer effect of Delta (9)-tetrahydrocannabinol (THC), the principal active component of cannabinoids has been demonstrated in various kinds of cancers.

We therefore evaluate the antitumor effects of THC on cholangiocarcinoma cells.

Both cholangiocarcinoma cell lines and surgical specimens from cholangiocarcinoma patients expressed cannabinoid receptors.

THC inhibited cell proliferation, migration and invasion, and induced cell apoptosis.

THC also decreased actin polymerization and reduced tumor cell survival in anoikis assay. pMEK1/2 and pAkt demonstrated the lower extent than untreated cells.

Consequently, THC is potentially used to retard cholangiocarcinoma cell growth and metastasis.” http://www.ncbi.nlm.nih.gov/pubmed/19916793 

“Cholangiocarcinoma is an epithelial cell malignancy arising from varying locations within the biliary tree showing markers of cholangiocyte differentiation. The most contemporary classification based on anatomical location includes intrahepatic, perihilar, and distal cholangiocarcinoma… Understanding of cholangiocarcinoma biology, the oncogenic landscape of this disease, and its complex interaction with the tumour microenvironment could lead to optimum therapies with improvement in patient survival… Hopefully, personalised or precision medicine is in the near future for the treatment of cholangiocarcinoma” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4069226/

 “Cholangiocarcinomas (bile duct cancers) are a heterogeneous group of malignancies arising from the epithelial cells of the intrahepatic, perihilar and extrahepatic bile ducts.”   http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3731530/

“Cholangiocarcinoma (CC) is the second most common primary hepatic malignancy after hepatocellular cancer. CC accounts for approximately 10%-25% of all hepatobiliary malignancies. CC is a rare malignancy in Western countries, but more common in Asia. There are several established risk factors for CC, including parasitic infections, primary sclerosing cholangitis, biliary-duct cysts, hepatolithiasis, and toxins. Other less-established potential risk factors include inflammatory bowel disease, hepatitis C virus, hepatitis B virus, cirrhosis, diabetes, obesity, alcohol drinking, tobacco smoking, and host genetic polymorphisms.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125451/

“Cholangiocarcinoma is a highly malignant cancer of the biliary tract with a poor prognosis, which often arises from conditions causing long-term inflammation, injury, and reparative biliary epithelial cell proliferation. Several conditions are known to be major risk factors for cancer in the biliary tract or gallbladder, including primary sclerosing cholangitis, liver fluke infection, pancreaticobiliary maljunction, and chemical exposure in proof-printing workers.”  http://www.ncbi.nlm.nih.gov/pubmed/24895231

http://www.thctotalhealthcare.com/category/cholangiocarcinoma/

(1)H NMR and HPLC/DAD for Cannabis sativa L. chemotype distinction, extract profiling and specification.

“The medicinal use of different chemovars and extracts of Cannabis sativa L. requires standardization beyond ∆9-tetrahydrocannabinol (THC) with complementing methods.

We investigated the suitability of (1)H NMR key signals for distinction of four chemotypes measured in deuterated dimethylsulfoxide together with two new validated HPLC/DAD methods used for identification and extract profiling based on the main pattern of cannabinoids and other phenolics alongside the assayed content of THC, cannabidiol (CBD), cannabigerol (CBG) their acidic counterparts (THCA, CBDA, CBGA), cannabinol (CBN) and cannflavin A and B. Effects on cell viability (MTT assay, HeLa) were tested.

The dominant cannabinoid pairs allowed chemotype recognition via assignment of selective proton signals and via HPLC even in cannabinoid-low extracts from the THC, CBD and CBG type.

Substantial concentrations of cannabinoid acids in non-heated extracts suggest their consideration for total values in chemotype distinction and specifications of herbal drugs and extracts.

Cannflavin A/B are extracted and detected together with cannabinoids but always subordinated, while other phenolics can be accumulated via fractionation and detected in a wide fingerprint but may equally serve as qualitative marker only.

Cell viability reduction in HeLa was more determined by the total cannabinoid content than by the specific cannabinoid profile.

Therefore the analysis and labeling of total cannabinoids together with the content of THC and 2-4 lead cannabinoids are considered essential.

The suitability of analytical methods and the range of compound groups summarized in group and ratio markers are discussed regarding plant classification and pharmaceutical specification.”

Synthetic Cannabinoids.

“Synthetic cannabinoids (SCBs), also known under the brand names of “Spice,” “K2,” “herbal incense,” “Cloud 9,” “Mojo” and many others, are becoming a large public health concern due not only to their increasing use but also to their unpredictable toxicity and abuse potential. There are many types of SCBs, each having a unique binding affinity for cannabinoid receptors.

Although both Δ-tetrahydrocannabinol (THC) and SCBs stimulate the same receptors, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), studies have shown that SCBs are associated with higher rates of toxicity and hospital admissions than is natural cannabis.

This is likely due to SCBs being direct agonists of the cannabinoidreceptors, whereas THC is a partial agonist.

Furthermore, the different chemical structures of SCBs found in Spice or K2 may interact in unpredictable ways to elicit previously unknown, and the commercial products may have unknown contaminants.

The largest group of users is men in their 20s who participate in polydrug use.

The most common reported toxicities with SCB use based on studies using Texas Poison Control records are tachycardia, agitation and irritability, drowsiness, hallucinations, delusions, hypertension, nausea, confusion, dizziness, vertigo and chest pain. Acute kidney injury has also been strongly associated with SCB use.

Treatment mostly involves symptom management and supportive care.

More research is needed to identify which contaminants are typically found in synthetic marijuana and to understand the interactions between different SBCs to better predict adverse health outcomes.”

Endocannabinoid signaling in female reproductive events: a potential therapeutic target?

“Nearly 30 years after the discovery in 1964 of the psychoactive ingredient of cannabis (Cannabis sativa), Δ9-tetrahydrocannabinol, its endogenous counterparts were discovered and collectively termed endocannabinoids (eCBs): N-arachidonoylethanolamine (anandamide) in 1992 and 2-arachidonoylglycerol in 1995.

Since then, intense research has identified additional eCBs and an ensemble of proteins that bind, synthesize and degrade them, the so-called eCB system.

Altogether, these new compounds have been recognized as key mediators of several aspects of human pathophysiology, and in particular of female fertility.

Here, the main features of the eCB system are presented, in order to put in a better perspective the relevance of eCB signaling in virtually all steps of human reproduction and to highlight emerging hopes that elements of this system might indeed become novel targets to combat fertility problems.”

http://www.ncbi.nlm.nih.gov/pubmed/26126134

Δ-9 Tetrahydrocannabinol inhibits growth and metastasis of lung cancer.

Image result for harvard university logo

“Lung cancer is the major cause of cancer-related mortality worldwide.

Many of these over-express epidermal growth factor receptor (EGFR), and are usually highly aggressive and resistant to chemotherapy.

Recent studies have shown that Δ-9 Tetrahydrocannabinol (THC), the major component of Cannabis sativa, possess anti-tumor properties against various types of cancers.

However, not much is known about its effect on lung cancer. In this study, we sought to characterize the effect of THC on EGF-induced growth and metastasis of human non small lung cancer cell (NSCLC) lines A549 and SW-1573.

We demonstrate that these cell lines and primary tumor samples derived from lung cancer patients express cannabinoids receptors CB1 and CB2, the known targets for THC action.

We further show that THC inhibits EGF-induced growth in these cell lines.

In addition THC attenuated EGF-stimulated chemotaxis and chemoinvasion.

Next we characterized the effect of THC on in vivo lung cancer growth and metastasis in a murine model. A549 cells were implanted in SCID mice (n=6 per group) through subcutaneous and intravenous injections to generate subcutaneous and lung metastatic cancer, respectively. THC (5mg/kg body wt.) was administered once daily through intraperitoneal injections for 21 days. The mice were analyzed for tumor growth and lung metastasis.

A significant reduction (~50%) in tumor weight and volume were observed in THC treated animals compared to the vehicle treated animals.

THC treated animals also showed a significant (~60%) reduction in macroscopic lesions on the lung surface in comparison to vehicle treated control.

Immunohistochemical analysis of the tumor samples from THC treated animals revealed anti-proliferative and anti-angiogenic effects of THC with significant reduction in staining for Ki67, a proliferative marker and CD31, an endothelial marker indicative of vascularization. Investigation into the signaling events associated with reduced EGF-induced functional effects revealed that THC also inhibits EGF-induced Akt phosphorylation. Akt is a central signaling molecule of EGFR-mediated signaling pathways and it regulates a diverse array of cellular functions, including proliferation, angiogenesis, invasion and apoptosis.

Cumulatively, these studies indicate that THC has anti-tumorigenic and anti-metastatic effects against lung cancer. Novel therapies against EGFR overexpressing, aggressive and chemotherapy resistant lung cancers may include targeting the cannabinoids receptors.”

http://cancerres.aacrjournals.org/content/67/9_Supplement/4749.short

http://www.thctotalhealthcare.com/category/lung-cancer/

Ultralow doses of cannabinoid drugs protect the mouse brain from inflammation-induced cognitive damage.

“In our previous studies, we found that a single ultralow dose of tetrahydrocannabinol (THC)… protects the brain from different insults that cause cognitive deficits.

Because various insults may trigger a neuroinflammatory response that leads to secondary damage to the brain, the current study tested whether this extremely low dose of THC could protect the brain from inflammation-induced cognitive deficits…

Our results suggest that an ultralow dose of THC that lacks any psychotrophic activity protects the brain from neuroinflammation-induced cognitive damage and might be used as an effective drug for the treatment of neuroinflammatory conditions, including neurodegenerative diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/25042014