The agonist binding mechanism of human CB2 receptor studied by molecular dynamics simulation, free energy calculation and 3D-QSAR studies.

“CB2-selective agonists have drawn attention in drug discovery, since CB2 becomes a promising target for the treatment of neuropathic pain without psychoactive or other CNS-related side effects…

A combinational exploration of both CoMFA steric and potential contour maps for CB2 affinities and the MD studied interaction modes sheds light on the structural requirements for CB2 agonists and serves as a basis for the design of novel CB2 agonists.”

http://www.ncbi.nlm.nih.gov/pubmed/24358778

Unique effects of compounds active at both cannabinoid and serotonin receptors during stroke.

“We reported previously that both a cannabinoid receptor 2 (CB2R) agonist and a cannabinoid receptor 1 (CB1R) antagonist were protective in the treatment of transient middle cerebral artery occlusion/reperfusion injury (MCAO/R) and that they acted in a synergistic manner when administered in combination. The goal of the current study was to determine which of the potential cannabinoid receptors participate in the protective effects of this drug combination in a mouse model of MCAO/R.

The effects of administration of the CB2R agonist/CB1R antagonist combination on infarct size and cerebral blood flow during a 1-h occlusion were tested…

In conclusion, administration of the CB2R agonist/CB1R antagonist combination causes a significant reduction in infarct size in the MCAO/R model. The protective effect involves both the CB2R and the 5-HT1A receptor. Neither the CB1R nor the TRPV1 receptors appear to participate in this response.”

http://www.ncbi.nlm.nih.gov/pubmed/24323810

Control of spasticity in a multiple sclerosis model using central nervous system-excluded CB1 cannabinoid receptor agonists.

“The purpose of this study was the generation of central nervous system (CNS)-excluded cannabinoid receptor agonists to test the hypothesis that inhibition of spasticity, due to CNS autoimmunity, could be controlled by affecting neurotransmission within the periphery…

In summary, CNS-excluded CB1 receptor agonists are a novel class of therapeutic agent for spasticity.”

http://www.ncbi.nlm.nih.gov/pubmed/24121462

Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans.

“Pre-extinction administration of Δ9-tetrahydrocannibinol (THC) facilitates recall of extinction in healthy humans, and evidence from animal studies suggest that this likely involves via enhancement of the cannabinoid system within the ventromedial prefrontal cortex (vmPFC) and hippocampus (HIPP), brain structures critical to fear extinction…

 This study provides the first evidence that pre-extinction administration of THC modulates prefrontal-limbic circuits during fear extinction in humans and prompts future investigation to test if cannabinoid agonists can rescue or correct the impaired behavioral and neural function during extinction recall in patients with PTSD.

 Ultimately, the cannabinoid system may serve as a promising target for innovative intervention strategies (e.g. pharmacological enhancement of exposure-based therapy) in PTSD and other fear learning-related disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/24055595

Cannabinoid facilitation of fear extinction memory recall in humans.

“Animal studies have shown that activation of the cannabinoid system during extinction learning enhances fear extinction and its retention. Specifically, CB1 receptor agonists, such as Δ9-tetrahydrocannibinol (THC), can facilitate extinction recall by preventing recovery of extinguished fear…

 We conducted a study using a randomized, double-blind, placebo-controlled, between-subjects design, coupling a standard Pavlovian fear extinction paradigm and simultaneous skin conductance response (SCR) recording with an acute pharmacological challenge with oral dronabinol (synthetic THC) or placebo (PBO) 2 h prior to extinction learning in 29 healthy adult volunteers (THC = 14; PBO = 15) and tested extinction retention 24 h after extinction learning.

Compared to subjects that received PBO, subjects that received THC showed low SCR to a previously extinguished CS when extinction memory recall was tested 24 h after extinction learning, suggesting that THC prevented the recovery of fear.

These results provide the first evidence that pharmacological enhancement of extinction learning is feasible in humans using cannabinoid system modulators, which may thus warrant further development and clinical testing. This article is part of a Special Issue entitled ‘Cognitive Enhancers’.”

http://www.ncbi.nlm.nih.gov/pubmed/22796109

The role of androgen receptor in transcriptional modulation of cannabinoid receptor type 1 gene in rat trigeminal ganglia.

“We have previously shown that anti-hyperalgesic effects of cannabinoid agonists under inflammatory condition are much greater in male than female, and that inflammatory cytokines upregulate cannabinoid receptor type 1 (CB1) expression in male, but not female, trigeminal ganglia (TG) in a testosterone-dependent manner. In this study, we investigated the mechanisms underlying the testosterone-mediated regulation of peripheral CB1 expression…

These experiments provided compelling evidence that testosterone regulates CB1 gene transcription in TG through AR following cytokine stimulation.

These results should provide mechanistic bases for understanding cytokine-hormone-neuron interactions in peripheral cannabinoid systems, and have important clinical implications for pain patients in whom testosterone level is naturally low, gradually declining or pharmacologically compromised.”

http://www.ncbi.nlm.nih.gov/pubmed/24055403

Towards a better Cannabis drug.

“Opium smoking has been mostly replaced by i.v. injection of morphine and heroin and we see cocaine sniffing rather than chewing of coca leaves. Cannabis use – be it of marijuana, hashish or bhang – differs.

Any cannabis cognoscente will insist that the crude material is ‘much better’ than pure Δ9 – tetrahydrocannabinol (THC), the only major psychoactive constituent of cannabis (Mechoulam et al., 1970).

Indeed, although pure THC is available as a drug (named Dronabinol) it is apparently not used illicitly.

The pharmacological/biochemical basis for this difference is not clear and is presumably due to several factors. A major reason seems to be the pharmacokinetic difference between cannabis smoking and the oral administration of THC.

 On smoking, the cannabis effects are noted almost immediately, while a 1.5 – 2 hour delay is observed on oral administration.

A further factor may be conditioning to the smell, although there are no published data along these lines. A further factor may be the presence of the terpenoid CB2 agonist beta-caryophyllene in cannabis (Gertsch et al., 2008).

CB2 agonists are well known to cause numerous effects (mostly of a protective nature) which may counteract some of the effects of THC (Pacher & Mechoulam, 2011).”

http://www.ncbi.nlm.nih.gov/pubmed/24024867

Cannabinoids and glucocorticoids modulate emotional memory after stress.

“Bidirectional and functional relationships between glucocorticoids and the endocannabinoid system have been demonstrated. Here, I review the interaction between the endocannabinoid and glucocorticoid/stress systems. Specifically, stress is known to produce rapid changes in endocannabinoid signaling in stress-responsive brain regions. In turn, the endocannabinoid system plays an important role in the downregulation and habituation of hypothalamic-pituitary-adrenocortical (HPA) axis activity in response to stress. Glucocorticoids also recruit the endocannabinoid system to exert rapid negative feedback control of the HPA axis during stress. It became increasingly clear, however, that cannabinoid CB1 receptors are also abundantly expressed in the basolateral amygdala (BLA) and other limbic regions where they modulate emotional arousal effects on memory.

 Enhancing cannabinoids signaling using exogenous CB1 receptor agonists prevent the effects of acute stress on emotional memory.

 I propose a model suggesting that the ameliorating effects of exogenously administered cannabinoids on emotional learning after acute stress are mediated by the decrease in the activity of the HPA axis via GABAergic mechanisms in the amygdala.”

http://www.ncbi.nlm.nih.gov/pubmed/23954749

Evaluation of the potential of the phytocannabinoids, cannabidivarin (CBDV) and Δ9 -tetrahydrocannabivarin (THCV), to produce CB1 receptor inverse agonism symptoms of nausea in rats.

“The cannabinoid 1(CB1 ) receptor inverse agonists/antagonists, rimonabant (SR141716, SR) and AM251, produce nausea and potentiate toxin-induced nausea by inverse agonism (rather than antagonism) of the CB1 receptor. Here, we evaluated two phytocannabinoids, cannabidivarin (CBDV) and Δ9 -tetrahydrocannabivarin (THCV) for their ability to produce these behavioural effects characteristic of CB1 receptor inverse agonism in rats.

…we investigated the potential of THCV and CBDV to produce conditioned gaping (measure of nausea-induced behaviour),..

THC, THCV  and CBDV suppressed LiCl-induced conditioned gaping, suggesting anti-nausea potential…

The pattern of findings indicates that neither THCV nor CBDV produced a behavioural profile characteristic of CB1 receptor inverse agonists.

As well, these compounds may have therapeutic potential in reducing nausea.”

http://www.ncbi.nlm.nih.gov/pubmed/23902479

Activation of spinal cannabinoid cb2 receptors inhibits neuropathic pain in streptozotocin-induced diabetic mice.

“The role of spinal cannabinoid systems in neuropathic pain of streptozotocin-induced diabetic mice was studied…

 … A low dose of WIN-55,212-2  significantly recovered the tail-flick latency in streptozotocin-induced diabetic mice… The selective cannabinoid CB2 receptor agonist L-759,656 also dose-dependently recovered the tail-flick latency in streptozotocin-induced diabetic mice…

 These results indicate that spinal cannabinoid systems are changed in diabetic mice and suggest that cannabinoid CB2 receptor agonists might have an ability to recover diabetic neuropathic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/23892011