Cannabinoids cool the intestine

Logo of nihpa

“Inflammatory bowel diseases (IBDs) such as ulcerative colitis and Crohn’s disease affects over a million people in the United States, with an estimated indirect cost from work loss of $3.6 billion annually. Many of these individuals suffer from pain, diarrhea and poor ability to digest their food, and in up to half of those with IBD, the disease is so severe that it ultimately requires surgery to remove the affected bowel segment.

Historically, marijuana has been used to treat diarrhea and has been advocated for the treatment of a variety of other gastrointestinal problems, including Crohn’s disease.

More recent pharmacological studies have clearly established that cannabinoids inhibit gastrointestinal motility and secretion by acting on CB1 receptors located on the terminals of both intrinsic and extrinsic submucosal neurons.

When administered to mice with chemically induced enteritis, cannabinoids also reduce inflammation and fluid accumulation in the gut.

Cannabinoids inhibit motility and secretion in the intestine.

They are now assigned the additional task of curbing excessive inflammation, suggesting that drugs targeting the endogenous cannabinoid system could be exploited for inflammatory bowel disease.

These findings may offer a new therapeutic approach to IBD.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2516444/

 

Current Status and Prospects for Cannabidiol Preparations as New Therapeutic Agents.

“There is growing pressure for states and the federal government to legalize the use of cannabis products for medical purposes in the United States.

Sixteen states have legalized (or decriminalized possession of) products high in cannabidiol (CBD) and with restricted Δ9 -tetrahydrocannabinol (Δ9 -THC) content. In most of these states, the intent is for use in refractory epileptic seizures in children, but in a few states, the indications are broader.

The objectives of this review are to provide an overview of the pharmacology and toxicology of CBD; to summarize some of the regulatory, safety, and cultural issues relevant to the further exploitation of its antiepileptic or other pharmacologic activities; and to assess the current status and prospects for clinical development of CBD and CBD-rich preparations for medical use in the United States.

Unlike Δ9 -THC, CBD elicits its pharmacologic effects without exerting any significant intrinsic activity on the cannabinoid receptors (CB1 and CB2 ), whose activation results in the psychotropic effects characteristic of Δ9 -THC, and CBD possesses several pharmacologic activities that give it a high potential for therapeutic use.

CBD exhibits antiepileptic, anxiolytic, antipsychotic, and antiinflammatory properties.

In combination with Δ9 -THC, CBD has received regulatory approvals in several European countries and is currently under study in U.S. Food and Drug Administration-registered trials in the United States.

A number of states have passed legislation to allow for the use of CBD-rich, limited Δ9 -THC-content preparations of cannabis for certain pathologic conditions. CBD is currently being studied in several clinical trials and is at different stages of clinical development for various medical indications.

Judging from clinical findings reported so far, CBD and CBD-enriched preparations have great potential utility, but uncertainties regarding sourcing, long-term safety, abuse potential, and regulatory dilemmas remain.”

http://www.ncbi.nlm.nih.gov/pubmed/27285147

Pharmacological activation of cannabinoid 2 receptor attenuates inflammation, fibrogenesis, and promotes re-epithelialization during skin wound healing.

“Previous studies showed that cannabinoid 2 (CB2) receptor is expressed in multiple effector cells during skin wound healing. Meanwhile, its functional involvement in inflammation, fibrosis, and cell proliferation in other organs and skin diseases implied CB2 receptor might also regulate skin wound healing.

These results, taken together, indicate that activating CB2 receptor could ameliorate wound healing by reducing inflammation, accelerating re-epithelialization, and attenuating scar formation.

Thus, CB2 receptor agonist might be a novel perspective for skin wound therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/27268717

RNA-seq analysis of delta -9-tetrahydrocannabinol-treated T cells reveals altered gene expression profiles that regulate immune response and cell proliferation.

“Marijuana has drawn significant public attention and concern both for its medicinal and recreational use. Δ9-tetrahydrocannabinol (THC), which is the main bioactive component in marijuana, has also been shown to possess potent anti-inflammatory properties by virtue of its ability to activate cannabinoid receptor-2 (CB-2) expressed on immune cells.

In this study, we used RNA-seq to quantify the transcriptomes and transcript variants that are differentially regulated by THC in super antigen-activated lymph node cells and CD4+ T cells. We found that the expressions of many transcripts were altered by THC in both total lymph node cells and CD4+ T cells. Furthermore, the abundance of many miRNA precursors and long non-coding RNAs was dramatically altered in THC treated mice. For example, the expression of miR-17/92 cluster and miR-374b/421 cluster was down regulated by THC. On the other hand miR-146a which has been shown to induce apoptosis was up regulated by THC. Long non-coding RNAs that are expressed from the opposite strand of CD27 and Appbp2 were induced by THC.

In addition, THC treatment also caused alternative promoter usage and splicing. The functions of those altered transcripts were mainly related to immune response and cell proliferation.”

http://www.ncbi.nlm.nih.gov/pubmed/27268054

Gastric acid inhibitory and gastric protective effects of Cannabis and cannabinoids.

“Cannabis sativa has long been known for its psychotropic effect. Only recently with the discovery of the cannabinoid receptors, their endogenous legends and the enzymes responsible for their synthesis and degradation, the role of this ‘endocannabinoid system’ in different pathophysiologic processes is beginning to be delineated.

There is evidence that CB1 receptor stimulation with synthetic cannabinoids or Cannabis sativa extracts rich in Δ9-tetrahydrocannabinol inhibit gastric acid secretion in humans and experimental animals.

This is specially seen when gastric acid secretion is stimulated by pentagastrin, carbachol or 2-deoxy-d-glucose.

Cannabis and/or cannabinoids protect the gastric mucosa against noxious challenge with non-steroidal anti-inflammatory drugs, ethanol as well as against stress-induced mucosal damage.

Cannabis/cannabinoids might protect the gastric mucosa by virtue of its antisecretory, antioxidant, anti-inflammatory, and vasodilator properties.”

http://www.ncbi.nlm.nih.gov/pubmed/27261847

Cannabinoid receptor-2 stimulation suppresses neuroinflammation by regulating microglial M1/M2 polarization through the cAMP/PKA pathway in an experimental GMH rat model.

“Excessive inflammatory responses are involved in secondary brain injury during germinal matrix hemorrhage (GMH). The process of microglial polarization to the pro-inflammatory M1 or anti-inflammatory M2 phenotypes is considered to occur in a major immunomodulatory manner during brain inflammation.

We previously found that cannabinoid receptor-2 (CB2R) stimulation attenuated microglial accumulation and brain injury following experimental GMH.

Herein, we investigated the effects of CB2R stimulation on neuroinflammation after experimental GMH and the potential mechanisms that mediate M1/M2 microglial phenotype regulation.

This is the first study to propose that promotion of microglial M2 polarization through the cAMP/PKA pathway participates in the CB2R-mediated anti-inflammatory effects after GMH induction.

The results will help to further understand the mechanisms that underlie neuroprotection by CB2R in GMH and promote clinical translational research for CB2R agonists.”

http://www.ncbi.nlm.nih.gov/pubmed/27261088

Pathways and gene networks mediating the regulatory effects of cannabidiol, a nonpsychoactive cannabinoid, in autoimmune T cells.

“Our previous studies showed that the non-psychoactive cannabinoid, cannabidiol (CBD), ameliorates the clinical symptoms in mouse myelin oligodendrocyte glycoprotein (MOG)35-55-induced experimental autoimmune encephalomyelitis model of multiple sclerosis (MS) as well as decreases the memory MOG35-55-specific T cell (TMOG) proliferation and cytokine secretion including IL-17, a key autoimmune factor.

Microarray-based gene expression profiling demonstrated that CBD exerts its immunoregulatory effects in activated memory TMOG cells via (a) suppressing proinflammatory Th17-related transcription, (b) by promoting T cell exhaustion/tolerance, (c) enhancing IFN-dependent anti-proliferative program, (d) hampering antigen presentation, and (d) inducing antioxidant milieu resolving inflammation.

These findings put forward mechanism by which CBD exerts its anti-inflammatory effects as well as explain the beneficial role of CBD in pathological memory T cells and in autoimmune diseases.”

Analysis of Omega-3 Fatty Acid Derived N-Acylethanolamines in Biological Matrices.

“The adequate quantification of endocannabinoids can be complex due to their low endogenous levels and structural diversity. Therefore, advanced analytical approaches, such as LC-MS, are used to measure endocannabinoids in plasma, tissues, and other matrices. Recent work has shown that endocannabinoids that are synthesized from n-3 fatty acids, such as docosahexaenoylethanolamide (DHEA) and eicosapentaenoylethanolamide (EPEA), have anti-inflammatory and anti-tumorigenic properties and stimulate synapse formation in neurites. Here, an LC-MS based method for the quantification of n-3 endocannabinoids DHEA and EPEA which is also suited to measure a wider spectrum of endocannabinoids is described. The chapter contains a step-by-step protocol for the analysis of n-3 endocannabinoids in plasma, including sample collection and solid phase extraction, LC-MS analysis, and data processing. Modifications to the protocol that allow quantifying n-3 endocannabinoids in tissues and cell culture media will also be discussed. Finally, conditions that alter endocannabinoid concentrations are briefly discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/27245889

Can Cannabinoids Modulate Fibrotic Progression in Systemic Sclerosis?

“Since ancient times, plants have been used for therapeutic purposes.

Cannabis sativa has been widely used as a medicinal herb by Ayurveda and traditional Chinese medicine for centuries.

According to our in vitro and in vivo experimental models, cannabinoids are able to modulate fibrosis.

The exact mechanism underlying this effect requires further investigation, but it seems to go beyond their anti-inflammatory and immunomodulatory properties.

Based on the above observations, we aimed to investigate the role of cannabinoids in systemic sclerosis (SSc), an autoimmune disease characterized by diffuse fibrosis.

Since preclinical data on cannabinoids show their capability to modulate fibrosis, inflammation and vasodilatation, these molecules could be ideal drugs for targeting SSc.”

http://www.ima.org.il/FilesUpload/IMAJ/0/193/96907.pdf

New therapeutic strategies for the treatment of male lower urinary tract symptoms.

“Male lower urinary tract symptoms (LUTS) are prevalent in the general population, especially in those of advanced age, and are characterized by notable diversity in etiology and presentation, and have been proven to cause various degrees of impairment on quality of life.

The prostate has traditionally been regarded as the core cause of male LUTS. As a result, medical treatment aims to provide symptomatic relief and effective management of progression of male LUTS due to benign prostatic enlargement.

Anti-inflammatory agents, vitamin D3-receptor analogs, and cannabinoids represent treatment modalities currently under investigation for use in LUTS patients.

Furthermore, luteinizing hormone-releasing hormone antagonists, transient receptor-potential channel blockers, purinergic neurotransmission antagonists, Rho-kinase inhibitors, and inhibitors of endothelin-converting enzymes could have therapeutic potential in LUTS management, but still remain in the experimental setting.

This article reviews new strategies for the medical treatment of male LUTS, which are dictated by the potential role of the bladder and the risk of benign prostatic hyperplasia progression. Moreover, combination treatments and therapies currently under investigation are also presented.”

http://www.ncbi.nlm.nih.gov/pubmed/27218069