“Inflammatory bowel diseases (IBD) are disorders of chronic intestinal inflammation of unknown etiology. The basic pathophysiological process is that of immune mediated inflammation affecting the intestinal tract. This process is dependent on and governed by both genetic and environmental factors. There are two distinct forms of IBD – ulcerative colitis and Crohn’s disease. There is no curative medical treatment. Furthermore, over 30% of patients, and over 70% with Crohn’s disease, will need surgical intervention for their disease. Thus, it comes as no surprise that many patients will turn to complementary or alternative medicine at some stage of their disease. Recent information reveals that between 16% and 50% of patients admit to having tried marijuana for their symptoms. There is a long list of gastrointestinal symptoms that have been reported to be relieved by cannabis. These include anorexia, nausea, abdominal pain, diarrhea, gastroparesis – all of which can be part of IBD. These effects are related to the fact that the gastrointestinal tract is rich in cannabinoid (CB) receptors and their endogenous ligands, comprising together the endocannabinoid system (ECS). In conclusion, use of cannabis is common in IBD, and it seems to be mostly safe. Accumulating preliminary data from human studies support a beneficial role of cannabinoids in IBD.” https://www.ima.org.il/FilesUpload/IMAJ/0/228/114217.pdf https://www.ima.org.il/imaj/ViewArticle.aspx?aId=4045 https://www.ncbi.nlm.nih.gov/pubmed/28457058]]>
Tag Archives: beneficial
Neurological aspects of medical use of cannabidiol.
“Cannabidiol (CBD) is among the major secondary metabolites of Cannabis devoid of the delta-9-tetra-hydrocannabinol psychoactive effects. It is a resorcinol-based compound with a broad spectrum of potential therapeutic properties, including neuroprotective effects in numerous pathological conditions. CBD neuroprotection is due to its antioxidant and antiinflammatory activi-ties and the modulation of a large number of brain biological targets (receptors, channels) involved in the development and maintenance of neurodegenerative diseases.
OBJECTIVE:
Aim of the present review was to describe the state of art about the pre-clinical research, the potential use and, when existing, the clinical evidence related to CBD in the neurological field.RESULTS:
Laboratory and clinical studies on the potential role of CBD in Parkinson’s disease (PD), Alzheimer’s disease (AD), multiple sclerosis (MS), Huntington’s disease (HD), amyotrophic lateral sclerosis ALS), cerebral ischemia, were examined.CONCLUSIONS:
Pre-clinical evidence largely shows that CBD can produce beneficial effects in AD, PD and MS patients, but its employment for these disorders needs further confirmation from well designed clinical studies. CBD pre-clinical demonstration of antiepileptic activity is supported by recent clinical studies in human epileptic subjects resistant to standard antiepileptic drugs showing its potential use in children and young adults affected by refractory epilepsy. Evidence for use of CBD in PD is still not supported by sufficient data whereas only a few studies including a small number of patients are available.” https://www.ncbi.nlm.nih.gov/pubmed/28412918]]>Dual therapy targeting the endocannabinoid system prevents experimental diabetic nephropathy.
“The endocannabinoid system has been implicated in the pathogenesis of diabetic nephropathy (DN). We investigated the effect of combined therapy with AM6545, a ‘peripherally’ restricted cannabinoid receptor type 1 (CB1R) neutral antagonist, and AM1241, a cannabinoid receptor type 2 (CB2R) agonist, in experimental DN.
RESULTS.:
Single treatment with either AM6545 or AM1241 alone reduced diabetes-induced albuminuria and prevented nephrin loss both in vivo and in vitro in podocytes exposed to glycated albumin. Dual therapy performed better than monotherapies, as it abolished albuminuria, inflammation, tubular injury and markedly reduced renal fibrosis. Converging anti-inflammatory mechanisms provide an explanation for this greater efficacy as dual therapy abolished diabetes-induced renal monocyte infiltration and M1/M2 macrophage imbalance in vivo and abrogated the profibrotic effect of M1 macrophage-conditioned media on cultured mesangial cells.CONCLUSION.:
‘Peripheral’ CB1R blockade is beneficial in experimental DN and this effect is synergically magnified by CB2R activation.” https://www.ncbi.nlm.nih.gov/pubmed/28387811]]>Low-Dose Cannabidiol Is Safe but Not Effective in the Treatment for Crohn's Disease, a Randomized Controlled Trial.
“Cannabidiol (CBD) is an anti-inflammatory cannabinoid shown to be beneficial in a mouse model of IBD. Lacking any central effect, cannabidiol is an attractive option for treating inflammatory diseases. In this study of moderately active Crohn’s disease, CBD was safe but had no beneficial effects. This could be due to lack of effect of CBD on Crohn’s disease, but could also be due to the small dose of CBD, the small number of patients in the study, or the lack of the necessary synergism with other cannabinoids.” https://www.ncbi.nlm.nih.gov/pubmed/28349233
“Cannabis induces a clinical response in patients with Crohn’s disease: a prospective placebo-controlled study. We performed a prospective trial to determine whether cannabis can induce remission in patients with Crohn’s disease. Complete remission was achieved by 5 of 11 subjects in the cannabis group and 1 of 10 in the placebo group. A short course (8 weeks) of THC-rich cannabis produced significant clinical, steroid-free benefits to 10 of 11 patients with active Crohn’s disease, compared with placebo, without side effects.” https://www.ncbi.nlm.nih.gov/pubmed/23648372]]>Low-Dose Cannabidiol Is Safe but Not Effective in the Treatment for Crohn’s Disease, a Randomized Controlled Trial.
“Cannabidiol (CBD) is an anti-inflammatory cannabinoid shown to be beneficial in a mouse model of IBD. Lacking any central effect, cannabidiol is an attractive option for treating inflammatory diseases. In this study of moderately active Crohn’s disease, CBD was safe but had no beneficial effects. This could be due to lack of effect of CBD on Crohn’s disease, but could also be due to the small dose of CBD, the small number of patients in the study, or the lack of the necessary synergism with other cannabinoids.” https://www.ncbi.nlm.nih.gov/pubmed/28349233
“Cannabis induces a clinical response in patients with Crohn’s disease: a prospective placebo-controlled study. We performed a prospective trial to determine whether cannabis can induce remission in patients with Crohn’s disease. Complete remission was achieved by 5 of 11 subjects in the cannabis group and 1 of 10 in the placebo group. A short course (8 weeks) of THC-rich cannabis produced significant clinical, steroid-free benefits to 10 of 11 patients with active Crohn’s disease, compared with placebo, without side effects.” https://www.ncbi.nlm.nih.gov/pubmed/23648372
Flexible Bionanocomposites from Epoxidised Hemp Seed Oil Thermosetting Resin Reinforced with Halloysite Nanotubes.
“Hempseed (Cannabis sativa L.) oil comprises a variety of beneficial unsaturated triglycerides with well-documented nutritional and health benefits.
However, it can become rancid over a relatively short time period leading to increased industrial costs and waste of a valuable product. The development of sustainable polymers is presented as a strategy where both the presence of unsaturation and perox-ide content could be affectively utilised to alleviate both this waste and financial burden.
After reaction with peroxyacetic acid, incorporation of halloysite nanotubes (HNTs) and sub-sequent thermal curing, without the need for organic sol-vents or interfacial modifiers, flexible transparent materials with a low glass transition temperature were developed. The improvement in thermal stability and both the static and dynamic mechanical properties of the bionanocomposites were significantly enhanced with the well-dispersed HNT filler. At an optimum concentration of 0.5 wt.% HNTs, a simultaneous increase in stiffness, strength, ductility and toughness was observed in comparison to the unfilled cured resin.
These sustainable food-waste derived bionanocompo-sites may provide an interesting alternative to petroleum-based materials, particularly for low-load bearing applica-tions, such as packaging.”
https://www.ncbi.nlm.nih.gov/pubmed/28240903
Activation of cannabinoid receptor 2 reduces inflammation in acute experimental pancreatitis via intra-acinar activation of p38 and MK2-dependent mechanisms.
“The endocannabinoid system has been shown to mediate beneficial effects on gastrointestinal inflammation via cannabinoid receptors 1 (CB(1)) and 2 (CB(2)).
These receptors have also been reported to activate the MAP kinases p38 and c-Jun NH(2)-terminal kinase (JNK), which are involved in early acinar events leading to acute pancreatitis and induction of proinflammatory cytokines.
Our aim was to examine the role of cannabinoid receptor activation in an experimental model of acute pancreatitis and the potential involvement of MAP kinases.
The unselective CB(1)/CB(2) agonist HU210 ameliorated pancreatitis in wild-type and CB(1)-/- mice, indicating that this effect is mediated by CB(2).
Furthermore, blockade of CB(2), not CB(1), with selective antagonists engraved pathology.
Stimulation with a selective CB(2) agonist attenuated acute pancreatitis and an increased activation of p38 was observed in the acini.
With use of MK2-/- mice, it could be demonstrated that this attenuation is dependent on MK2. Hence, using the MK2-/- mouse model we reveal a novel CB(2)-activated and MAP kinase-dependent pathway that modulates cytokine expression and reduces pancreatic injury and affiliated complications.”
https://www.ncbi.nlm.nih.gov/pubmed/23139224
“For centuries, hashish and marihuana, both derived from the Indian hemp Cannabis sativa L., have been used for their medicinal, as well as, their psychotropic effects.
These effects are associated with the phytocannabinoids which are oxygen containing C21 aromatic hydrocarbons found in Cannabis sativa L.
To date, over 120 phytocannabinoids have been isolated from Cannabis.
For many years, it was assumed that the beneficial effects of the phytocannabinoids were mediated by the