pain in Extrapyramidal Neurodegenerative Diseases.

Image result for Clin J Pain.

“Pain is one of the most common non-motor symptoms of Parkinson disease (PD) and other Parkinson plus syndromes, with a major effect on quality of life.

The aims of the study were to examine the prevalence and characteristics of pain in PD and other Parkinson plus syndromes and patient use and response to pain medications.

The most beneficial analgesics were nonsteroidal anti-inflammatory drugs and medical cannabis.”

http://www.ncbi.nlm.nih.gov/pubmed/27623111

The gastrointestinal tract – a central organ of cannabinoid signaling in health and disease.

Image result for Neurogastroenterol Motil

“In ancient medicine, extracts of the marijuana plant Cannabis sativa were used against diseases of the gastrointestinal (GI) tract.

Today, our knowledge of the ingredients of the Cannabis plant has remarkably advanced enabling us to use a variety of herbal and synthetic cannabinoid (CB) compounds to study the endocannabinoid system (ECS), a physiologic entity that controls tissue homeostasis with the help of endogenously produced CBs and their receptors.

After many anecdotal reports suggested beneficial effects of Cannabis in GI disorders, it was not surprising to discover that the GI tract accommodates and expresses all the components of the ECS.

Cannabinoid receptors and their endogenous ligands, the endocannabinoids, participate in the regulation of GI motility, secretion, and the maintenance of the epithelial barrier integrity.

In addition, other receptors, such as the transient receptor potential cation channel subfamily V member 1 (TRPV1), the peroxisome proliferator-activated receptor alpha (PPARα) and the G-protein coupled receptor 55 (GPR55), are important participants in the actions of CBs in the gut and critically determine the course of bowel inflammation and colon cancer.

PURPOSE:

The following review summarizes important and recent findings on the role of CB receptors and their ligands in the GI tract with emphasis on GI disorders, such as irritable bowel syndrome, inflammatory bowel disease, and colon cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/27561826

CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson’s disease.

“The cannabinoid (CB2) receptor type 2 has been proposed to prevent the degeneration of dopamine neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice.

Our results suggest that targeting the cannabinoid system may be beneficial for the treatment of neurodegenerative diseases, such as PD, that are associated with glial activation, BBB disruption and peripheral immune cell infiltration.”

http://www.ncbi.nlm.nih.gov/pubmed/27534533

“The cannabinoid type two receptors (CB2), an important component of the endocannabinoid system, have recently emerged as neuromodulators and therapeutic targets for neurodegenerative diseases including Parkinson’s disease (PD).” http://www.ncbi.nlm.nih.gov/pubmed/27531971

Cannabinoid Type 2 (CB2) Receptors Activation Protects against Oxidative Stress and Neuroinflammation Associated Dopaminergic Neurodegeneration in Rotenone Model of Parkinson’s Disease.

“The cannabinoid type two receptors (CB2), an important component of the endocannabinoid system, have recently emerged as neuromodulators and therapeutic targets for neurodegenerative diseases including Parkinson’s disease (PD).

The downregulation of CB2 receptors has been reported in the brains of PD patients. Therefore, both the activation and the upregulation of the CB2 receptors are believed to protect against the neurodegenerative changes in PD.

In the present study, we investigated the CB2 receptor-mediated neuroprotective effect of β-caryophyllene (BCP), a naturally occurring CB2 receptor agonist, in, a clinically relevant, rotenone (ROT)-induced animal model of PD.

Interestingly, BCP supplementation demonstrated the potent therapeutic effects against ROT-induced neurodegeneration, which was evidenced by BCP-mediated CB2 receptor activation and the fact that, prior administration of the CB2 receptor antagonist AM630 diminished the beneficial effects of BCP.

The present study suggests that BCP has the potential therapeutic efficacy to elicit significant neuroprotection by its anti-inflammatory and antioxidant activities mediated by activation of the CB2 receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27531971

The endocannabinoid system and Post Traumatic Stress Disorder (PTSD): From preclinical findings to innovative therapeutic approaches in clinical settings.

“Post-Traumatic Stress Disorder (PTSD) is a psychiatric chronic disease developing in individuals after the experience of an intense and life-threatening traumatic event. The post-traumatic symptomatology encompasses alterations in memory processes, mood, anxiety and arousal.

There is now consensus in considering the disease as an aberrant adaptation to traumatic stress. Pharmacological research, aimed at the discovery of new potential effective treatments, has lately directed its attention towards the “so-called” cognitive enhancers. This class of substances, by modulating cognitive processes involved in the development and/or persistence of the post-traumatic symptomatology, could be of great help in improving the outcome of psychotherapies and patients’ prognosis.

In this perspective, drugs acting on the endocannabinoid system are receiving great attention due to their dual ability to modulate memory processes on one hand, and to reduce anxiety and depression on the other.

The purpose of the present review is to offer a thorough overview of both animal and human studies investigating the effects of cannabinoids on memory processes.

First, we will briefly describe the characteristics of the endocannabinoid system and the most commonly used animal models of learning and memory. Then, studies investigating cannabinoid modulatory influences on memory consolidation, retrieval and extinction will be separately presented, and the potential benefits associated with each approach will be discussed.

In the final section, we will review literature data reporting beneficial effects of cannabinoid drugs in PTSD patients.”

http://www.ncbi.nlm.nih.gov/pubmed/27456243

Delta-9-tetrahydrocannabinol protects against MPP+ toxicity in SH-SY5Y cells by restoring proteins involved in mitochondrial biogenesis.

Related image

“Proliferator-activated receptor γ (PPARγ) activation can result in transcription of proteins involved in oxidative stress defence and mitochondrial biogenesis which could rescue mitochondrial dysfunction in Parkinson’s disease (PD). The PPARγ agonist pioglitazone is protective in models of PD; however side effects have limited its clinical use.

The cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) may have PPARγ dependent anti-oxidant properties. Here we investigate the effects of Δ9-THC and pioglitazone on mitochondrial biogenesis and oxidative stress.

We found that only Δ9-THC was able to restore mitochondrial content in MPP+ treated SH-SY5Y cells in a PPARγ dependent manner by increasing expression of the PPARγ co-activator 1α (PGC-1α), the mitochondrial transcription factor (TFAM) as well as mitochondrial DNA content.

… unlike pioglitazone, Δ9-THC resulted in a PPARγ dependent reduction of MPP+ induced oxidative stress.

We therefore suggest that, in contrast to pioglitazone, Δ9-THC mediates neuroprotection via PPARγ-dependent restoration of mitochondrial content which may be beneficial for PD treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/27366949

http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=10314&path[]=32486

Cannabinoids and Neuro-Inflammation: Regulation of Brain Immune Response.

“Cannabinoid receptors are involved in neurophatogenic mechanisms of inflammatory disorders of the central nervous system and their expression can be modulated during the disease.

Brain inflammatory processes are characterized by infiltration of numerous types of cells, peripheral immune cells, brain resident immune cells, the microglial cells and numerous other neuronal cells. The disruption of the blood brain barrier favours cell infiltration in the central nervous system with consequent neuronal damage, common event in many neuro-inflammatory diseases.

In this review we evidence the role of cannabinoid receptor, their expression at peripheral and central levels in order to better understand their implication in neuro-inflammation.

Cannabinoids affect brain adaptive and immune response, have regulatory action on inflammatory mediators and can exert a role in blood brain barrier damage prevention.

Furthermore, in numerous neurodegenerative diseases with inflammatory component the beneficial effects of cannabinoids have been widely reported, so current knowledge of cannabinoid involvement in these central nervous system disorders are also reviewed.”

http://www.ncbi.nlm.nih.gov/pubmed/27334610

Cannabimimetic Drugs: Recent Patents in Central Nervous System Disorders.

“Agents acting via cannabinoid receptors have been widely developed; starting from the chemical structure of phytocannabinoids isolated from cannabis sativa plant, specific and selective compounds of these receptors have been produced ranging from partial to full agonists and /or antagonists endowed with different potency.

The enhanced interest on developing such classes of drugs is due to the beneficial properties widely reported by both anecdotal reports and scientific studies describing the potential medicinal use of cannabinoids and their derivatives in numerous pathological conditions in both in vitro and in vivo models.

The use of these drugs has been found to be of benefit in a wide number of neurological and neuropsychiatric disorders, and in many other diseases ranging from cancer, atherosclerosis, stroke, hypertension, inflammatory related disorders, and autoimmune diseases, just to mention some.

In particular, being the cannabinoid CB1 receptor a central receptor expressed by neurons of the central nervous system, the attention for the treatment of neurological diseases has been mainly focused on compounds acting via this receptor, however some of these compounds has been showed to act by alternative pathways in some cases unrelated to CB1 receptors.

Nonetheless, endocannabinoids are potent regulators of the synaptic function in the central nervous system and their levels are modulated in neurological diseases.

In this study, we focused on endocannabinoid mechanism of action in neuronal signaling and on cannabimimetic drug potential application in neurological disorders.

Finally, novel patents on cannabis-based drugs with applicability in central nervous system disorders are highlighted, to suggest future potential therapeutic utility of derivatives of this ancient plant.”

http://www.ncbi.nlm.nih.gov/pubmed/27334611

Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy

Logo of nihpa

“Severe childhood epilepsies are characterized by frequent seizures, neurodevelopmental delays and impaired quality of life. In these treatment-resistant epilepsies, families often seek alternative treatments.

This survey explored the use of cannabidiol-enriched cannabis in children with treatment-resistant epilepsy. The survey was presented to parents belonging to a Facebook group dedicated to sharing information about the use of cannabidiol-enriched cannabis to treat their child’s seizures.

Nineteen responses met the inclusion criteria for the study: a diagnosis of epilepsy and current use of cannabidiol-enriched cannabis. Thirteen children had Dravet syndrome, four had Doose syndrome, and one each had Lennox-Gastaut syndrome and idiopathic epilepsy.

The average number of anti-epileptic drugs (AEDs) tried before using cannabidiol-enriched cannabis was 12. Sixteen (84%) of the 19 parents reported a reduction in their child’s seizure frequency while taking cannabidiol-enriched cannabis. Of these, two (11%) reported complete seizure freedom, eight (42%) reported a greater than 80% reduction in seizure frequency, and six (32%) reported a 25-60% seizure reduction.

Other beneficial effects included increased alertness, better mood and improved sleep. Side effects included drowsiness and fatigue.

Our survey shows that parents are using cannabidiol-enriched cannabis as a treatment for children with treatment-resistant epilepsy. Because of the increasing number of states that allow access to medical cannabis, its use will likely be a growing concern for the epilepsy community. Safety and tolerability data for cannabidiol-enriched cannabis use among children is not available. Objective measurements of a standardized preparation of pure cannabidiol are needed to determine whether it is safe, well tolerated and efficacious at controlling seizures in this difficult-to-treat pediatric population.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157067/

Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinsońs disease.

“Elements of the endocannabinoid system are strongly expressed in the basal ganglia where they suffer profound rearrangements after dopamine depletion.

Modulation of the levels of the endocannabinoid 2-arachidonoyl glycerol by inhibiting monoacylglycerol lipase alters glial phenotypes and provides neuroprotection in a mouse model of Parkinsońs disease.

In this study, we assessed whether inhibiting fatty acid amide hydrolase could also provide beneficial effects on the time course of this disease.

Together, these results demonstrate an effect of fatty acid amide hydrolase inhibition on the motor symptoms of Parkinsońs disease in two distinct experimental models that is mediated by cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27318096