“As medicinal and recreational marijuana use broadens across the United States, knowledge of its effects on the body will become increasingly important to all health care providers, including surgeons.
Tag Archives: cannabinoid
Beta-caryophyllene alleviates diet-induced neurobehavioral changes in rats: The role of CB2 and PPAR-γ receptors.
“Insulin resistance (IR) and obesity predispose diseases such as diabetes, cardiovascular and neurodegenerative disorders. Beta-caryophyllene (BCP), a natural sesquiterpene, exerts neuroprotective, anxiolytic and antidepressant effects via its selective agonism to cannabinoid receptor 2 (CB2R). BCP was shown to have an anti-diabetic effect, however, the implication of CB2R is yet to be elucidated. A link between CB2R agonism and PPAR-γ activation has been discussed, but the exact mechanism is not well-defined. This study was designed to examine the role of BCP in improving diet-induced metabolic (insulin resistance), neurobehavioral (anxiety, depression and memory deficit), and neurochemical (oxidative, inflammatory and neurotrophic factor) alterations in the prefrontal cortex of obese rats’ brain. The involvement of CB2R and/or PPAR-γ dependent activity was also investigated.
KEY RESULTS:
Beta-caryophyllene alleviated HFFD-induced IR, oxidative-stress, neuroinflammation and behavioral changes. The anxiolytic, anti-oxidant and anti-inflammatory effects of BCP were mediated by both PPAR-γ and CB2R. The effects of BCP on glycemic parameters seem to be CB2R-dependent with the non-significant role of PPAR-γ. Furthermore, BCP-evoked antidepressant and memory improvement are likely mediated only via CB2R, mainly by upregulation of PGC-1α and BDNF.CONCLUSION:
This study suggests the potential effect of BCP in treating HFFD-induced metabolic and neurobehavioral alterations. BCP seems to activate PPAR-γ in a ligand-independent manner, via upregulation and activation of PGC-1α. The BCP activation of PPAR–γ seems to be CB2R-dependent.” https://www.ncbi.nlm.nih.gov/pubmed/30469079 https://www.sciencedirect.com/science/article/pii/S0753332218370033?via%3Dihub “β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.” http://www.ncbi.nlm.nih.gov/pubmed/23138934“Beta-caryophyllene is a dietary cannabinoid.” https://www.ncbi.nlm.nih.gov/pubmed/18574142
]]>Activation of GPR55 induces neuroprotection of hippocampal neurogenesis and immune responses of neural stem cells following chronic, systemic inflammation.
“New neurons are continuously produced by neural stem cells (NSCs) within the adult hippocampus. Numerous diseases, including major depressive disorder and HIV-1 associated neurocognitive disorder, are associated with decreased rates of adult neurogenesis. A hallmark of these conditions is a chronic release of neuroinflammatory mediators by activated resident glia.
Recent studies have shown a neuroprotective role on NSCs of cannabinoid receptor activation. Yet, little is known about the effects of GPR55, a candidate cannabinoid receptor, activation on reductions of neurogenesis in response to inflammatory insult.
In the present study, we examined NSCs exposed to IL-1β in vitro to assess inflammation-caused effects on NSC differentiation and the ability of GPR55 agonists to attenuate NSC injury.
Taken together, these results suggest a neuroprotective role of GPR55 activation on NSCs in vitro and in vivo and that GPR55 provides a novel therapeutic target against negative regulation of hippocampal neurogenesis by inflammatory insult.”
Neuroprotection by cannabidiol and hypothermia in a piglet model of newborn hypoxic-ischemic brain damage.
“Hypothermia, the gold standard after a hypoxic-ischemic insult, is not beneficial in all treated newborns. Cannabidiol is neuroprotective in animal models of newborn hypoxic-ischemic encephalopathy. This study compared the relative efficacies of cannabidiol and hypothermia in newborn hypoxic-ischemic piglets and assessed whether addition of cannabidiol augments hypothermic neuroprotection.
RESULTS:
HI led to sustained depressed brain activity and increased microglial activation, which was significantly improved by cannabidiol alone or with hypothermia but not by hypothermia alone. Hypoxic-ischemic-induced increases in Lac/NAA, Glu/NAA, TNFα or apoptosis were not reversed by either hypothermia or cannabidiol alone, but combination of the therapies did. No treatment modified the effects of HI on oxidative stress or astroglial activation. Cannabidiol treatment was well tolerated.CONCLUSIONS:
cannabidiol administration after hypoxia-ischemia in piglets offers some neuroprotective effects but the combination of cannabidiol and hypothermia shows some additive effect leading to more complete neuroprotection than cannabidiol or hypothermia alone.” https://www.ncbi.nlm.nih.gov/pubmed/30468796 https://www.sciencedirect.com/science/article/pii/S0028390818308554?via%3Dihub]]>Long-Term Safety, Tolerability, and Efficacy of Cannabidiol in Children with Refractory Epilepsy: Results from an Expanded Access Program in the US.
“Purified cannabidiol is a new antiepileptic drug that has recently been approved for use in patients with Lennox-Gastaut and Dravet syndromes, but most published studies have not extended beyond 12-16 weeks.
“The plant Cannabis sativa produces over 140 known
“Diabetes and aging are risk factors for cognitive impairments after chronic cerebral hypoperfusion (CCH).
Cannabidiol (CBD) is a phytocannabinoid present in the