Recent advances in status epilepticus.

“This review discusses advances in the understanding of the mechanisms of status epilepticus and its current treatment approaches.

RECENT FINDINGS:

A new definition and classification of status epilepticus was proposed, which is expected to improve treatment and stimulate research. A better understanding of the failure of seizure suppressing mechanisms and the initiation of self-sustaining seizures begins to translate into the clinical arena.

Drugs, such as allopregnanolone, cannabinoids, sec-butylpropylacetamide and valnoctamide, may better target these seizure-perpetuating mechanisms.

The concept of combinatorial treatments has further developed, but yet trials in humans are lacking. A new prognostic outcome-score and electroencephalography-criteria for nonconvulsive status epilepticus are ready for clinical use. Alternative routes, such as intranasal or buccal, have been explored in a number of trials suggesting that intramuscular midazolam is at least as effective as intravenous lorazepam and buccal or intranasal midazolam is at least as effective as rectal diazepam.

SUMMARY:

Despite progress in basic science, translation into the clinical field remains difficult. There is hope, that the two large phase III studies in the established and refractory status that started recruitment in 2015 will better inform the clinicians in this emergency situation.”

http://www.ncbi.nlm.nih.gov/pubmed/26886360

http://www.thctotalhealthcare.com/category/epilepsy-2/

The Endocannabinoid System as a Therapeutic Target in Glaucoma.

“Glaucoma is an irreversible blinding eye disease which produces progressive retinal ganglion cell (RGC) loss. Intraocular pressure (IOP) is currently the only modifiable risk factor, and lowering IOP results in reduced risk of progression of the disorder.

The endocannabinoid system (ECS) has attracted considerable attention as a potential target for the treatment of glaucoma, largely due to the observed IOP lowering effects seen after administration of exogenous cannabinoids.

However, recent evidence has suggested that modulation of the ECS may also be neuroprotective.

This paper will review the use of cannabinoids in glaucoma, presenting pertinent information regarding the pathophysiology of glaucoma and how alterations in cannabinoid signalling may contribute to glaucoma pathology.

Additionally, the mechanisms and potential for the use of cannabinoids and other novel agents that target the endocannabinoid system in the treatment of glaucoma will be discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/26881140

http://www.thctotalhealthcare.com/category/glaucoma-2/

Endogenous and Synthetic Cannabinoids as Therapeutics in Retinal Disease.

“The functional significance of cannabinoids in ocular physiology and disease has been reported some decades ago.

In the early 1970s, subjects who smoked Cannabis sativa developed lower intraocular pressure (IOP). This led to the isolation of phytocannabinoids from this plant and the study of their therapeutic effects in glaucoma.

The main treatment of this disease to date involves the administration of drugs mediating either the decrease of aqueous humour synthesis or the increase of its outflow and thus reduces IOP. However, the reduction of IOP is not sufficient to prevent visual field loss.

Retinal diseases, such as glaucoma and diabetic retinopathy, have been defined as neurodegenerative diseases and characterized by ischemia-induced excitotoxicity and loss of retinal neurons. Therefore, new therapeutic strategies must be applied in order to target retinal cell death, reduction of visual acuity, and blindness.

The aim of the present review is to address the neuroprotective and therapeutic potential of cannabinoids in retinal disease.”

http://www.ncbi.nlm.nih.gov/pubmed/26881135

The Endocannabinoid System in the Retina: From Physiology to Practical and Therapeutic Applications.

“Cannabis is one of the most prevalent drugs used in industrialized countries.

The main effects of Cannabis are mediated by two major exogenouscannabinoids: ∆9-tetrahydroxycannabinol and cannabidiol. They act on specific endocannabinoid receptors, especially types 1 and 2.

Mammals are endowed with a functional cannabinoid system including cannabinoid receptors, ligands, and enzymes.

This endocannabinoid signaling pathway is involved in both physiological and pathophysiological conditions with a main role in the biology of the central nervous system.

As the retina is a part of the central nervous system due to its embryonic origin, we aim at providing the relevance of studying the endocannabinoid system in the retina. Here, we review the distribution of the cannabinoid receptors, ligands, and enzymes in the retina and focus on the role of the cannabinoid system in retinal neurobiology.

This review describes the presence of the cannabinoid system in critical stages of retinal processing and its broad involvement in retinal neurotransmission, neuroplasticity, and neuroprotection.

Accordingly, we support the use of synthetic cannabinoids as new neuroprotective drugs to prevent and treat retinal diseases.

Finally, we argue for the relevance of functional retinal measures in cannabis users to evaluate the impact of cannabis use on human retinal processing.”

http://www.ncbi.nlm.nih.gov/pubmed/26881099

Functions of the CB1 and CB 2 receptors in neuroprotection at the level of the blood-brain barrier.

“The cannabinoid (CB) receptors are the main targets of the cannabinoids, which include plant cannabinoids, endocannabinoids and synthetic cannabinoids. Over the last few years, accumulated evidence has suggested a role of the CB receptors in neuroprotection.

The blood-brain barrier (BBB) is an important brain structure that is essential for neuroprotection. A link between the CB receptors and the BBB is thus likely, but this possible connection has only recently gained attention.

Cannabinoids and the BBB share the same mechanisms of neuroprotection and both protect against excitotoxicity (CB1), cell death (CB1), inflammation (CB2) and oxidative stress (possibly CB independent)-all processes that also damage the BBB.

Several examples of CB-mediated protection of the BBB have been found, such as inhibition of leukocyte influx and induction of amyloid beta efflux across the BBB.

Moreover, the CB receptors were shown to improve BBB integrity, particularly by restoring the tightness of the tight junctions. This review demonstrated that both CB receptors are able to restore the BBB and neuroprotection, but much uncertainty about the underlying signaling cascades still exists and further investigation is needed.”

http://www.ncbi.nlm.nih.gov/pubmed/24929655

Neuroprotective effects of the synthetic cannabinoid HU-210 in primary cortical neurons are mediated by phosphatidylinositol 3-kinase/AKT signaling.

“Cannabinoids (CBs) are neuroprotective in vivo and in vitro.

…the PI 3-K/AKT signaling pathway mediates the neuroprotective effect of exogenous cannabinoids in primary CNS neurons.”

http://www.ncbi.nlm.nih.gov/pubmed/15607953

Cannabinoids down-regulate PI3K/Akt and Erk signalling pathways and activate proapoptotic function of Bad protein.

“Cannabinoids were shown to induce apoptosis of glioma cells in vitro and tumor regression in vivo…

… we suggest that the increase of proapoptotic Bad activity is an important link between the inhibition of survival pathways and an onset of execution phase of cannabinoid-induced glioma cell death.” http://www.ncbi.nlm.nih.gov/pubmed/15451022

“A glioma is a primary brain tumor that originates from the supportive cells of the brain, called glial cells.” http://neurosurgery.ucla.edu/body.cfm?id=159

“Remarkably, cannabinoids kill glioma cells selectively and can protect non-transformed glial cells from death.”  http://www.ncbi.nlm.nih.gov/pubmed/15275820

http://www.thctotalhealthcare.com/category/gllomas/

Cannabinoids Promote Oligodendrocyte Progenitor Survival: Involvement of Cannabinoid Receptors and Phosphatidylinositol-3 Kinase/Akt Signaling

Image result for the journal of neuroscience logo

“Cannabinoids exert pleiotropic actions in the CNS, including the inhibition of inflammatory responses and the enhancement of neuronal survival after injury… cannabinoid receptors are distributed widely in brain… Cannabinoids Promote Oligodendrocyte Progenitor Survival: Involvement of Cannabinoid Receptors and Phosphatidylinositol-3 Kinase/Akt Signaling.

Limited clinical studies have suggested that cannabis might ameliorate the symptomatology in multiple sclerosis patients, and beneficial effects of synthetic cannabinoids have been reported in vivoin rodent models of multiple sclerosis.

Apart from their actions on motor and pain pathways, cannabinoids regulate the immune response by reducing the production of inflammatory mediators by leukocytes, astrocytes, and microglia, which may contribute to their beneficial effects.

The results of the present study also point to a direct role of cannabinoids in promoting the survival of oligodendrocyte progenitors, particularly in unfavorable conditions, as would be the case in demyelinating diseases. Studies in progress are aimed to evaluate the function of cannabinoids in other models affecting oligodendroglial survival.

http://www.jneurosci.org/content/22/22/9742.long

Identification of endocannabinoids and cannabinoid CB(1) receptor mRNA in the pituitary gland.

“Most data on effects of natural and synthetic cannabinoids on anterior pituitary hormone secretion point out to a primary impact on the hypothalamus. There is also some evidence, however, of possible direct actions of these compounds on the anterior pituitary, although the presence of cannabinoid receptors in the pituitary has not been documented as yet.

In the present study, we evaluated the presence of cannabinoid CB(1) receptor-mRNA transcripts in the pituitary gland by in situ hybridization.

We observed CB(1) receptor-mRNA transcripts in the anterior pituitary and to a lesser extent in the intermediate lobe whereas they were absent in the neural lobe. We then examined whether CB(1) receptor-mRNA levels in both pituitary lobes responded to chronic activation by a specific agonist, as did receptors located in adjacent hypothalamic nuclei and in other brain regions…

We also checked whether endogenous cannabinoid ligands are present in the anterior pituitary and the hypothalamus.

Although anandamide itself was detected only in trace amounts, concentrations of its precursor N-arachidonoyl-phosphatidyl-ethanolamine and of 2-arachidonoyl-glycerol were found in both tissues, suggesting that endocannabinoids may be synthetized in the anterior pituitary.

In summary, CB(1) receptors and corresponding ligands seem to be expressed in cells of the anterior and intermediate lobes of the pituitary, but the response of CB(1) receptor-mRNA transcripts in the anterior lobe to chronic agonist activation is different than the desensitization observed in hypothalamic nuclei.”

http://www.ncbi.nlm.nih.gov/pubmed/10461028

Treatment-refractory Tourette Syndrome.

“Tourette syndrome (TS) is a complex neurodevelopmental condition marked by tics and frequently associated with psychiatric comorbidities. While most cases are mild and improve with age, some are treatment-refractory.

Here, we review strategies for the management of this population. We begin by examining the diagnosis of TS and routine management strategies.

We then consider emerging treatments for refractory cases, including deep brain stimulation (DBS), electroconvulsive therapy (ECT), repetitive transcranial magnetic stimulation (rTMS), and novel pharmacological approaches such as new vesicular monoamine transporter type 2 inhibitors, cannabinoids, and anti-glutamatergic drugs.”

http://www.ncbi.nlm.nih.gov/pubmed/26875502

http://www.thctotalhealthcare.com/category/tourettes-syndrome/