Effect of Non-psychotropic Plant-derived Cannabinoids on Bladder Contractility: Focus on Cannabigerol.

“There are anecdotal reports that some Cannabis preparations may be useful for bladder dysfunctions.

Here, we investigated the effect of a number of non- psychotropic phytocannabinoids, namely cannabidiol (CBD), cannabigerol (CBG), cannabidivarin (CBDV), Δ9-tetrahydrocannabivarin (THCV) and cannabichromene (CBC) on mouse bladder contractility in vitro.

CBG, THCV, CBD and CBDV, but not CBC, at concentration ranging from 10(-8) M to 10(-4) M, decreased (with similar potency), the contractions induced by acetylcholine without significantly modifying the contractions induced by electrical stimulation.

The rank order of efficacy was CBG=THCV>CBD>CBDV.

In depth studies on CBG showed that the effect of this phytocannabinoid on acetylcholine-induced contractions was not affected by CB1 or CB2 receptor antagonists.

Additionally, CBG also reduced acetylcholine-induced contractions in the human bladder.”

http://www.ncbi.nlm.nih.gov/pubmed/26197538

Lack of presynaptic interaction between glucocorticoid and CB1 cannabinoid receptors in GABA- and glutamatergic terminals in the frontal cortex of laboratory rodents.

“Corticosteroid and endocannabinoid actions converge on prefrontocortical circuits associated with neuropsychiatric illnesses. Corticosteroids can also modulate forebrain synapses by using endocannabinoid effector systems…

Altogether, corticosteroids are unlikely to exert direct non-genomic presynaptic neuromodulation in the frontal cortex, but they may do so indirectly, via the stimulation of trans-synaptic endocannabinoid signaling.”

http://www.ncbi.nlm.nih.gov/pubmed/26196379

Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist.

“Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease.

Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury.

We have previously reported the receptor affinity of 3′,5′-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury.

Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940.

The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined.

Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury.”

http://www.ncbi.nlm.nih.gov/pubmed/26196013

Use and effects of cannabinoids in military veterans with posttraumatic stress disorder.

“Published evidence regarding the use of cannabis and cannabis derivatives by military veterans with posttraumatic stress disorder (PTSD) is reviewed.

SUMMARY:

When inhaled or delivered orally or transdermally, cannabinoids (the psychoactive components of unrefined marijuana and various derivative products) activate endogenous cannabinoid receptors, modulating neurotransmitter release and producing a wide range of central nervous system effects, including increased pleasure and alteration of memory processes. Those effects provide a pharmacologic rationale for the use of cannabinoids to manage the three core PTSD symptom clusters: reexperiencing, avoidance and numbing, and hyperarousal.

Cross-sectional studies have found a direct correlation between more severe PTSD symptomatology and increased motivation to use cannabis for coping purposes, especially among patients with difficulties in emotional regulation or stress tolerance. Data from 4 small studies suggested that cannabinoid use was associated with global improvements in PTSD symptoms or amelioration of specific PTSD symptoms such as insomnia and nightmares.

CONCLUSION:

While further research into cannabinoid treatment effects on PTSD symptoms is required, the evaluated evidence indicates that substantial numbers of military veterans with PTSD use cannabis or derivative products to control PTSD symptoms, with some patients reporting benefits in terms of reduced anxiety and insomnia and improved coping ability.”

http://www.ncbi.nlm.nih.gov/pubmed/26195653

Elucidating Cannabinoid Biology in Zebrafish (Danio rerio).

“Although exogenous cannabinoids, like those contained in marijuana, are known to exert their effects by disrupting the endocannabinoid system, a dearth of knowledge exists about the potential toxicological consequences on public health.

Conversely, the endocannabinoid system represents a promising therapeutic target for a plethora of disorders because it functions to endogenously regulate a vast repertoire of physiological functions.

Accordingly, the rapidly expanding field of cannabinoid biology has sought to leverage model organisms in order to provide both toxicological and therapeutic insights about altered endocannabinoid signaling.

The primary goal of this manuscript is to review the existing field of cannabinoid research in the genetically tractable zebrafish model-focusing on the cannabinoid receptor genes, cnr1 and cnr2, and the genes that produce enzymes for synthesis and degradation of the cognate ligands anandamide and 2-arachidonylglycerol.

Consideration is also given to research that has studied the effects of exposure to exogenous phytocannabinoids and synthetic cannabinoids that are known to interact with cannabinoid receptors.

These results are considered in the context of either endocannabinoid gene expression or endocannabinoid gene function, and are integrated with findings from rodent studies.

This provides the framework for a discussion of how zebrafish may be leveraged in the future to provide novel toxicological and therapeutic insights in the field of cannabinoid biology, which has become increasingly significant given recent trends in cannabis legislation.”

http://www.ncbi.nlm.nih.gov/pubmed/26192460

Activation of CB2 receptor is required for the therapeutic effect of ABHD6 inhibition in experimental autoimmune encephalomyelitis.

“Alpha/beta-hydrolase domain 6 (ABHD6) is a novel 2-arachidonoylglycerol (2-AG) hydrolytic enzyme, that can fine-tune the endocannabinoid signaling in the central nervous system.

Recently we and others have demonstrated the protective effect of ABHD6 inhibition in the animal models of traumatic brain injury and epileptic seizures. In this study, we investigated the role of targeting ABHD6 in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS)…

These results suggest that inhibition of ABHD6 might be used as an ideal strategy for the treatment of MS and other neurodegenerative diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/26189763

The endocannabinoid, endovanilloid and nitrergic systems could interact in the rat dorsolateral periaqueductal gray matter to control anxiety-like behaviors.

“Cannabinoid compounds usually produce biphasic effects in the modulation of emotional responses.

Low doses of the endocannabinoid anandamide (AEA) injected into the dorsolateral periaqueductal gray matter (dlPAG) induce anxiolytic-like effects via CB1 receptors activation.

However, at higher doses the drug loses this effect, in part by activating Transient Receptor Potential Vanilloid Type 1 (TRPV1).

Activation of these latter receptors could induce the formation of nitric oxide (NO). Thus, the present study tested the hypothesis that at high doses AEA loses it anxiolytic-like effect by facilitating, probably via TRPV1 receptor activation, the formation of NO.

…these results support the hypothesis that intra-dlPAG injections of high doses of AEA lose their anxiolytic effects by favoring TRPV1 receptors activity and consequent NO formation, which in turn could facilitate defensive responses.”

Interaction between Cannabinoid Compounds and Capsazepine in Protection against Acute Pentylenetetrazole-induced Seizure in Mice.

“The pharmacological interaction between cannabinoidergic system and vanilloid type 1 (TRPV1) channels has been investigated in various conditions such as pain and anxiety.

In some brain structure including hippocampus, CB1 and TRPV1 receptors coexist and their activation produces opposite effect on excitability of neurons.

In this study, we tested the hypothesis that TRPV1 channel is involved in the modulation of cannabinoid effects on pentylenetetrazole (PTZ)-induced seizure threshold…

The anticonvulsant actions of both capsazepine and ACEA were attenuated after co-administration of these compounds. Moreover, the anticonvulsant action of capsazepine was attenuated after co-administration with VDM11.

The results suggest an interaction between cannabinoidergic system and TRPV1 receptors in protection against acute PTZ-induced seizure in mice.”

http://www.ncbi.nlm.nih.gov/pubmed/26185513

Cannabis and Exercise Science: A Commentary on Existing Studies and Suggestions for Future Directions.

“Policies regarding cannabis use are rapidly changing, yet public officials have limited access to scientific information that might inform the creation of these policies.

One important area in which to begin investigations is the link between recreational cannabis use and health, specifically exercise.

There are common anecdotal reports that cannabis decreases motivation, including motivation to exercise. On the other hand, there are also anecdotal reports that cannabis is used prior to athletic activity.

In fact, the World Anti-Doping Agency includes cannabis as a prohibited substance in sport, partly because it is believed that it may enhance sports performance.

Given recent political, cultural, and legal trends, and the growing acceptance of recreational cannabis use, it is important to develop a more nuanced understanding of the relationship between cannabis and exercise, specifically the potential effects of use on exercise performance, motivation, and recovery.”

http://www.ncbi.nlm.nih.gov/pubmed/26178329

Phytocannabinoids for Cancer Therapeutics: Recent Updates and Future Prospects.

“Phytocannabinoids (pCBs) are lipid-soluble phytochemicals present in the plant, Cannabis sativa L. and non-cannabis plants which have a long history in traditional and recreational medicine.

The plant and constituents were central in the discovery of the endocannabinoid system, the most new target for drug discovery.

The endocannabinoid system includes two G protein-coupled receptors; the cannabinoid receptors-1 and -2 (CB1 and CB2) for marijuana’s psychoactive principle ∆(9)-tetrahydrocannabinol (∆9-THC), their endogenous small lipid ligands; namely anandamide (AEA) and 2-arachidonoylglycerol (2-AG), also known as endocannabinoids and the proteins for endocannabinoid biosynthesis and degradation such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL).

The endocannabinoid system has been suggested as a pro-homeostatic and pleiotropic signaling system activated in a time- and tissue-specific way during pathological conditions including cancer.

Targeting the CB1 receptors become a concern because of adverse psychotropic reactions. Hence, targeting the CB2 receptors or the endocannabinoid metabolizing enzyme by phytocannabinoids obtained from non-cannabis plant lacking psychotropic adverse reactions has garnered interest in drug discovery.

These pCBs derived from plants beyond cannabis appear safe and effective with a wider access and availability.

In recent years, several pCBs derived other than non-cannabinoid plants have been reported to bind to and functionally interact with cannabinoid receptors and appear promising candidate for drug development in cancer therapeutics.

Several of them also target the endocannabinoid metabolizing enzymes that control endocannabinoid levels. In this article, we summarize, critically discuss the updates and future prospects of the pCBs as novel and promising candidates for cancer therapeutics.”

http://www.ncbi.nlm.nih.gov/pubmed/26179998

http://www.thctotalhealthcare.com/category/cancer/