Δ9-Tetrahydrocannabinol Prevents Cardiovascular Dysfunction in STZ-Diabetic Wistar-Kyoto Rats.

Image result for hindawi journal

“The aim of this study was to determine if chronic, low-dose administration of a nonspecific cannabinoid receptor agonist could provide cardioprotective effects in a model of type I diabetes mellitus.

Δ9-Tetrahydrocannabinol administration to diabetic animals significantly reduced blood glucose concentrations and attenuated pathological changes in serum markers of oxidative stress and lipid peroxidation. Positive changes to biochemical indices in diabetic animals conferred improvements in myocardial and vascular function.

This study demonstrates that chronic, low-dose administration of Δ9-tetrahydrocannabinol can elicit antihyperglycaemic and antioxidant effects in diabetic animals, leading to improvements in end organ function of the cardiovascular system. Implications from this study suggest that cannabinoid receptors may be a potential new target for the treatment of diabetes-induced cardiovascular disease.”   https://www.ncbi.nlm.nih.gov/pubmed/29181404

“The aim of this study was to determine if a nonspecific cannabinoid receptor agonist could provide cardioprotective effects in a model of type I diabetes mellitus. Outcomes from this study indicate that THC administration to STZ improved functional parameters of cardiovascular health by reducing oxidative stress, lipid peroxidation, and blood glucose levels. These results indicate that activation of cannabinoid receptors may be a viable experimental target for the prevention of oxidative stress-induced complications in type I diabetes mellitus.”  https://www.hindawi.com/journals/bmri/2017/7974149/

Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA).

Journal of Pharmaceutical and Biomedical Analysis

“Hemp seed oil from Cannabis sativa L. is a very rich natural source of important nutrients, not only polyunsaturated fatty acids and proteins, but also terpenes and cannabinoids, which contribute to the overall beneficial effects of the oil.

Hence, it is important to have an analytical method for the determination of these components in commercial samples. At the same time, it is also important to assess the safety of the product in terms of amount of any psychoactive cannabinoid present therein.

This work presents the development and validation of a highly sensitive, selective and rapid HPLC-UV method for the qualitative and quantitative determination of the main cannabinoids, namely cannabidiolic acid (CBDA), tetrahydrocannabinolic acid (THCA), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN), cannabigerol (CBG) and cannabidivarin (CBDV), present in 13 commercial hemp seed oils.

Moreover, since decomposition of cannabinoid acids generally occurs with light, air and heat, decarboxylation studies of the most abundant acid (CBDA) were carried out in both open and closed reactor and the kinetics parameters were evaluated at different temperatures in order to evaluate the stability of hemp seed oil in different storage conditions.”

Targeting Cannabinoid Signaling in the Immune System: “High”-ly Exciting Questions, Possibilities, and Challenges.

Image result for frontiers in immunology

“It is well known that certain active ingredients of the plants of Cannabis genus, i.e., the “phytocannabinoids” [pCBs; e.g., (-)-trans9-tetrahydrocannabinol (THC), (-)-cannabidiol, etc.] can influence a wide array of biological processes, and the human body is able to produce endogenous analogs of these substances [“endocannabinoids” (eCB), e.g., arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol (2-AG), etc.].

These ligands, together with multiple receptors (e.g., CB1 and CB2 cannabinoid receptors, etc.), and a complex enzyme and transporter apparatus involved in the synthesis and degradation of the ligands constitute the endocannabinoid system (ECS), a recently emerging regulator of several physiological processes.

The ECS is widely expressed in the human body, including several members of the innate and adaptive immune system, where eCBs, as well as several pCBs were shown to deeply influence immune functions thereby regulating inflammation, autoimmunity, antitumor, as well as antipathogen immune responses, etc.

Based on this knowledge, many in vitro and in vivo studies aimed at exploiting the putative therapeutic potential of cannabinoid signaling in inflammation-accompanied diseases (e.g., multiple sclerosis) or in organ transplantation, and to dissect the complex immunological effects of medical and “recreational” marijuana consumption.

Thus, the objective of the current article is (i) to summarize the most recent findings of the field; (ii) to highlight the putative therapeutic potential of targeting cannabinoid signaling; (iii) to identify open questions and key challenges; and (iv) to suggest promising future directions for cannabinoid-based drug development.”   https://www.ncbi.nlm.nih.gov/pubmed/29176975

“Although, many open questions await to be answered, pharmacological modulation of the (endo)cannabinoid signaling, and restoration of the homeostatic eCB tone of the tissues augur to be very promising future directions in the management of several pathological inflammation-accompanied diseases.”   https://www.frontiersin.org/articles/10.3389/fimmu.2017.01487/full

Regulation of noradrenergic and serotonergic systems by cannabinoids: relevance to cannabinoid-induced effects.

Cover image

“The cannabinoid system is composed of Gi/o protein-coupled cannabinoid type 1 receptor (CB1) and cannabinoid type 2 (CB2) receptor and endogenous compounds. The CB1 receptor is widely distributed in the central nervous system (CNS) and it is involved in the regulation of common physiological functions. At the neuronal level, the CB1 receptor is mainly placed at GABAergic and glutamatergic axon terminals, where it modulates excitatory and inhibitory synapses. To date, the involvement of CB2 receptor in the regulation of neurotransmission in the CNS has not been clearly shown. The majority of noradrenergic (NA) cells in mammalian tissues are located in the locus coeruleus (LC) while serotonergic (5-HT) cells are mainly distributed in the raphe nuclei including the dorsal raphe nucleus (DRN). In the CNS, NA and 5-HT systems play a crucial role in the control of pain, mood, arousal, sleep-wake cycle, learning/memory, anxiety, and rewarding behaviour. This review summarizes the electrophysiological, neurochemical and behavioural evidences for modulation of the NA/5-HT systems by cannabinoids and the CB1 receptor. Cannabinoids regulate the neuronal activity of NA and 5-HT cells and the release of NA and 5-HT by direct and indirect mechanisms. The interaction between cannabinoid and NA/5-HT systems may underlie several behavioural changes induced by cannabis such as anxiolytic and antidepressant effects or side effects (e.g. disruption of attention). Further research is needed to better understand different aspects of NA and 5-HT systems regulation by cannabinoids, which would be relevant for their use in therapeutics.”

https://www.ncbi.nlm.nih.gov/pubmed/29169951

http://www.sciencedirect.com/science/article/pii/S0024320517306069

Pharmacological Foundations of Cannabis Chemovars.

“An advanced Mendelian Cannabis breeding program has been developed utilizing chemical markers to maximize the yield of phytocannabinoids and terpenoids with the aim to improve therapeutic efficacy and safety.

Cannabis is often divided into several categories based on cannabinoid content. Type I, Δ9-tetrahydrocannabinol-predominant, is the prevalent offering in both medical and recreational marketplaces. In recent years, the therapeutic benefits of cannabidiol have been better recognized, leading to the promotion of additional chemovars: Type II, Cannabis that contains both Δ9-tetrahydrocannabinol and cannabidiol, and cannabidiol-predominant Type III Cannabis.

While high-Δ9-tetrahydrocannabinol and high-myrcene chemovars dominate markets, these may not be optimal for patients who require distinct chemical profiles to achieve symptomatic relief. Type II Cannabis chemovars that display cannabidiol- and terpenoid-rich profiles have the potential to improve both efficacy and minimize adverse events associated with Δ9-tetrahydrocannabinol exposure. Cannabis samples were analyzed for cannabinoid and terpenoid content, and analytical results are presented via PhytoFacts, a patent-pending method of graphically displaying phytocannabinoid and terpenoid content, as well as scent, taste, and subjective therapeutic effect data.

Examples from the breeding program are highlighted and include Type I, II, and III Cannabis chemovars, those highly potent in terpenoids in general, or single components, for example, limonene, pinene, terpinolene, and linalool. Additionally, it is demonstrated how Type I - III chemovars have been developed with conserved terpenoid proportions. Specific chemovars may produce enhanced analgesia, anti-inflammatory, anticonvulsant, antidepressant, and anti-anxiety effects, while simultaneously reducing sequelae of Δ9-tetrahydrocannabinol such as panic, toxic psychosis, and short-term memory impairment.”

https://www.ncbi.nlm.nih.gov/pubmed/29161743

https://www.thieme-connect.de/DOI/DOI?10.1055/s-0043-122240

Synthesis of Photoswitchable Δ9-Tetrahydrocannabinol Derivatives Enables Optical Control of Cannabinoid Receptor 1 Signaling.

Journal of the American Chemical Society

“The cannabinoid receptor 1 (CB1) is an inhibitory G protein-coupled receptor abundantly expressed in the central nerv-ous system. It has rich pharmacology and largely accounts for the recreational use of cannabis. We describe efficient asymmetric syntheses of four photoswitchable Δ9-tetrahydrocannabinol derivatives (azo-THCs) from a central building block 3-Br-THC. Using electrophysiology and a FRET-based cAMP assay, two compounds are identified as potent CB1 agonists that change their effect upon illumination. As such, azo-THCs enable CB1-mediated optical control of inwardly-rectifying potassium channels, as well as adenylyl cyclase.”

https://www.ncbi.nlm.nih.gov/pubmed/29161035

http://pubs.acs.org/doi/10.1021/jacs.7b06456

Current evidence of cannabinoid-based analgesia obtained in preclinical and human experimental settings.

European Journal of Pain

“Cannabinoids have a long record of recreational and medical use and become increasingly approved for pain therapy. This development is based on preclinical and human experimental research summarized in this review.

Cannabinoid CB1 receptors are widely expressed throughout the nociceptive system. Their activation by endogenous or exogenous cannabinoids modulates the release of neurotransmitters. This is reflected in antinociceptive effects of cannabinoids in preclinical models of inflammatory, cancer and neuropathic pain, and by nociceptive hypersensitivity of cannabinoid receptor-deficient mice.

Cannabis-based medications available for humans mainly comprise Δ9 -tetrahydrocannabinol (THC), cannabidiol (CBD) and nabilone.

During the last 10 years, six controlled studies assessing analgesic effects of cannabinoid-based drugs in human experimental settings were reported. An effect on nociceptive processing could be translated to the human setting in functional magnetic resonance imaging studies that pointed at a reduced connectivity within the pain matrix of the brain. However, cannabinoid-based drugs heterogeneously influenced the perception of experimentally induced pain including a reduction in only the affective but not the sensory perception of pain, only moderate analgesic effects, or occasional hyperalgesic effects. This extends to the clinical setting.

While controlled studies showed a lack of robust analgesic effects, cannabis was nearly always associated with analgesia in open-label or retrospective reports, possibly indicating an effect on well-being or mood, rather than on sensory pain. Thus, while preclinical evidence supports cannabinoid-based analgesics, human evidence presently provides only reluctant support for a broad clinical use of cannabinoid-based medications in pain therapy.

SIGNIFICANCE:

Cannabinoids consistently produced antinociceptive effects in preclinical models, whereas they heterogeneously influenced the perception of experimentally induced pain in humans and did not provide robust clinical analgesia, which jeopardizes the translation of preclinical research on cannabinoid-mediated antinociception into the human setting.”

https://www.ncbi.nlm.nih.gov/pubmed/29160600

http://onlinelibrary.wiley.com/doi/10.1002/ejp.1148/abstract?systemMessage=Wiley+Online+Library+usage+report+download+page+will+be+unavailable+on+Friday+24th+November+2017+at+21%3A00+EST+%2F+02.00+GMT+%2F+10%3A00+SGT+%28Saturday+25th+Nov+for+SGT+

Effects of chronic Δ9-tetrahydrocannabinol treatment on Rho/Rho-kinase signalization pathway in mouse brain.

Saudi Pharmaceutical Journal

“Δ9-Tetrahydrocannabinol (Δ9-THC) shows its effects by activating cannabinoid receptors which are on some tissues and neurons. Cannabinoid systems have role on cell proliferation and development of neurons. Furthermore, it is interesting that cannabinoidsystem and rho/rho-kinase signalization pathway, which have important role on cell development and proliferation, may have role on neuron proliferation and development together. Thus, a study is planned to investigate rhoA and rho-kinase enzyme expressions and their activities in the brain of chronic Δ9-THC treated mice. One group of mice are treated with Δ9-THC once to see effects of acute treatment. Another group of mice are treated with Δ9-THC three times per day for one month. After this period, rhoA and rho-kinase enzyme expressions and their activities in mice brains are analyzed by ELISA method. Chronic administration of Δ9-THC decreased the expression of rhoA while acute treatment has no meaningful effect on it. Administration of Δ9-THC did not affect expression of rho-kinase on both chronic and acute treatment. Administration of Δ9-THC increased rho-kinase activity on both chronic and acute treatment, however, chronic treatment decreased its activity with respect to acute treatment. This study showed that chronic Δ9-THC treatment down-regulated rhoA expression and did not change the expression level of rho-kinase which is downstream effector of rhoA. However, it elevated the rho-kinase activity. Δ9-THC induced down-regulation of rhoA may cause elevation of cypin expression and may have benefit on cypin related diseases. Furthermore, use of rho-kinase inhibitors and Δ9-THC together can be useful on rho-kinase related diseases.”

Standardized Cannabis sativa extract attenuates tau and stathmin gene expression in the melanoma cell line.

Iranian Journal of Basic Medical Sciences

“Metastasis is the main cause of death in patients with melanoma.

Cannabis-based medicines are effective adjunctive drugs in cancer patients.

Tau and Stathmin proteins are the key proteins in cancer metastasis. Here we have investigated the effect of a standardized Cannabis sativa extract on cell migration and Tau and Stathmin gene expression in the melanoma cell line.

RESULTS:

Tau and stathmin gene expression was significantly decreased compared to the control group. Cell migration was also significantly reduced compared to controls.

CONCLUSION:

C. sativa decreased tau and stathmin gene expression and cancer metastasis. The results may have some clinical relevance for the use of cannabis-based medicines in patients with metastatic melanoma.”

https://www.ncbi.nlm.nih.gov/pubmed/29147495

Associations between medical cannabis and prescription opioid use in chronic pain patients: A preliminary cohort study.

Image result for plos one

“Current levels and dangers of opioid use in the U.S. warrant the investigation of harm-reducing treatment alternatives.

PURPOSE:

A preliminary, historical, cohort study was used to examine the association between enrollment in the New Mexico Medical Cannabis Program (MCP) and opioid prescription use.

RESULTS:

By the end of the 21 month observation period, MCP enrollment was associated with 17.27 higher age- and gender-adjusted odds of ceasing opioid prescriptions (CI 1.89 to 157.36, p = 0.012), 5.12 higher odds of reducing daily prescription opioid dosages (CI 1.56 to 16.88, p = 0.007), and a 47 percentage point reduction in daily opioid dosages relative to a mean change of positive 10.4 percentage points in the comparison group (CI -90.68 to -3.59, p = 0.034). The monthly trend in opioid prescriptions over time was negative among MCP patients (-0.64mg IV morphine, CI -1.10 to -0.18, p = 0.008), but not statistically different from zero in the comparison group (0.18mg IV morphine, CI -0.02 to 0.39, p = 0.081). Survey responses indicated improvements in pain reduction, quality of life, social life, activity levels, and concentration, and few side effects from using cannabis one year after enrollment in the MCP (ps<0.001).

CONCLUSIONS:

The clinically and statistically significant evidence of an association between MCP enrollment and opioid prescription cessation and reductions and improved quality of life warrants further investigations on cannabis as a potential alternative to prescription opioids for treating chronic pain.” https://www.ncbi.nlm.nih.gov/pubmed/29145417

“In summary, if cannabis can serve as an alternative to prescription opioids for at least some patients, legislators and the medical community may want to consider medical cannabis programs as a potential tool for combating the current opioid epidemic.”   http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0187795

“Study finds medical cannabis is effective at reducing opioid addiction”  http://news.unm.edu/news/study-finds-medical-cannabis-is-effective-at-reducing-opioid-addiction