Daily cannabis and reduced risk of steatosis in human immunodeficiency virus and hepatitis C virus co-infected patients (ANRS CO13-HEPAVIH).

Journal of Viral Hepatitis

“Liver steatosis is common in Human Immunodeficiency Virus (HIV) – Hepatitis C Virus (HCV) co-infected patients. Some recent studies have found that cannabis use is negatively associated with insulin resistance in the general population and in HIV-HCV co-infected patients.

Given the causal link between insulin resistance and steatosis, we hypothesized that cannabis use has a positive impact on steatosis.

Therefore, we aimed to study whether cannabis use in this population was associated with a reduced risk of steatosis, measured by ultrasound examination.

The ANRS CO13-HEPAVIH cohort is a French nationwide multicenter of HIV-HCV co-infected patients. Medical and socio-behavioral data from clinical follow-up visits and annual self-administered questionnaires were prospectively collected. A cross-sectional analysis was conducted using data from the first visit where both ultrasound examination data for steatosis (positive or negative diagnosis) and data on cannabis use were available. A logistic regression model was used to evaluate the association between cannabis use and steatosis. Among study sample patients (n=838), 40.1% had steatosis. Fourteen percent reported daily cannabis use, 11.7% regular use, and 74.7% no use or occasional use (“never or sometimes”).

Daily cannabisuse was independently associated with a reduced prevalence of steatosis (adjusted odds ratio [95%]=0.64 [0.42;0.99]; p=0.046), after adjusting for body mass index, hazardous alcohol consumption and current or lifetime use of lamivudine/zidovudine. Daily cannabisuse may be a protective factor against steatosis in HIV-HCV co-infected patients. These findings confirm the need for a clinical evaluation of cannabis-based pharmacotherapies in this population.”

https://www.ncbi.nlm.nih.gov/pubmed/28984055

http://onlinelibrary.wiley.com/doi/10.1111/jvh.12797/abstract

Effects of cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer’s disease.

Issue Cover

“Alzheimer’s disease (AD) is a neurodegenerative disease, in which the primary etiology remains unknown. AD presents amyloid beta (Aβ) protein aggregation and neurofibrillary plaque deposits. AD shows oxidative stress and chronic inflammation.

In AD, canonical Wingless-Int (Wnt)/β-catenin pathway is downregulated, whereas peroxisome proliferator-activated receptor γ (PPARγ) is increased. Downregulation of Wnt/β-catenin, through activation of glycogen synthase kinase-3β (GSK-3β) by Aβ, and inactivation of phosphatidylinositol 3-kinase/Akt signaling involve oxidative stress in AD.

Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid from Cannabis sativa plant. In PC12 cells, Aβ-induced tau protein hyperphosphorylation is inhibited by CBD. This inhibition is associated with a downregulation of p-GSK-3β, an inhibitor of Wnt pathway. CBD may also increase Wnt/β-catenin by stimulation of PPARγ, inhibition of Aβ and ubiquitination of amyloid precursor protein.

CBD attenuates oxidative stress and diminishes mitochondrial dysfunction and reactive oxygen species generation. CBD suppresses, through activation of PPARγ, pro-inflammatory signaling and may be a potential new candidate for AD therapy.”

https://www.ncbi.nlm.nih.gov/pubmed/28981597

https://academic.oup.com/abbs/article-abstract/49/10/853/3978657/Effects-of-cannabidiol-interactions-with-Wnt?redirectedFrom=fulltext

Cannabis sativa Extract Reduces Cytoskeletal Associated Proteins in Breast Cancer Cell Line

Bioactivities of alternative protein sources and their potential health benefits.

“Increasing the utilisation of plant proteins is needed to support the production of protein-rich foods that could replace animal proteins in the human diet so as to reduce the strain that intensive animal husbandry poses to the environment. Lupins, quinoa and hempseed are significant sources of energy, high quality proteins, fibre, vitamins and minerals. In addition, they contain compounds such as polyphenols and bioactive peptides that can increase the nutritional value of these plants. From the nutritional standpoint, the right combination of plant proteins can supply sufficient amounts of essential amino acids for human requirements. This review aims at providing an overview of the current knowledge of the nutritional properties, beneficial and non-nutritive compounds, storage proteins, and potential health benefits of lupins, quinoa and hempseed.”

https://www.ncbi.nlm.nih.gov/pubmed/28804797

Human serum albumin: A modulator of cannabinoid drugs.

International Union of Biochemistry and Molecular Biology

“The endocannabinoid system is a unique neuromodulatory system that affects a wide range of biological processes and maintains the homeostasis in all mammal body systems. In recent years, several pharmacological tools to target endocannabinoid neurotransmission have been developed, including direct and indirect cannabinoid agonists and cannabinoid antagonists. Due to their hydrophobic nature, cannabinoid agonists and antagonists need to bind specific transporters to allow their distribution in body fluids. Human serum albumin (HSA), the most abundant plasma protein, is a key determinant of drug pharmacokinetics. As HSA binds both the endocannabinoid anandamide and the active ingredient of Cannabis sativa, Δ-9-tetrahydrocannabinol, we hypothesize that HSA can be the most important carrier of cannabinoid drugs. In silico docking observations strongly indicate that HSA avidly binds the indirect cannabinoid agonists URB597, AM5206, JZL184, JZL195, and AM404, the direct cannabinoid agonists WIN55,212-2 and CP55,940, and the prototypical cannabinoid antagonist/inverse agonist SR141716. Values of the free energy for cannabinoid drugs binding to HSA range between -5.4 kcal mol-1 and -10.9 kcal mol-1 . Accounting for the HSA concentration in vivo (∼ 7.5 × 10-4 M), values of the free energy here determined suggest that the formation of the HSA:cannabinoid drug complexes may occur in vivo. Therefore, HSA appears to be an important determinant for cannabinoid efficacy and may guide the choice of the drug dose regimen to optimize drug efficacy and to avoid drug-related toxicity. ”

https://www.ncbi.nlm.nih.gov/pubmed/28976704

http://onlinelibrary.wiley.com/doi/10.1002/iub.1682/abstract

The Current Landscape of Marijuana and Pharmacogenetics.

Image result for cureus

“The treatment of medical conditions with cannabis and cannabinoid compounds is advancing.

Although there are numerous reports related to the genetic variations of the cannabinoid receptor, a lack of studies that examine the relationship between other pharmacogenetic markers and health outcomes currently exists.

Herein, we advocate for the legalization of marijuana in the United States in order to perform more randomized controlled trials to help elucidate the role of other pharmacogenetic targets and cannabis for use in clinical practice.”

https://www.ncbi.nlm.nih.gov/pubmed/28975060

https://www.cureus.com/articles/8321-the-current-landscape-of-marijuana-and-pharmacogenetics

Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome.

Current Issue

“Worldwide medicinal use of cannabis is rapidly escalating, despite limited evidence of its efficacy from preclinical and clinical studies. Here we show that cannabidiol (CBD) effectively reduced seizures and autistic-like social deficits in a well-validated mouse genetic model of Dravet syndrome (DS), a severe childhood epilepsy disorder caused by loss-of-function mutations in the brain voltage-gated sodium channel NaV1.1.

The duration and severity of thermally induced seizures and the frequency of spontaneous seizures were substantially decreased. Treatment with lower doses of CBD also improved autistic-like social interaction deficits in DS mice.

Phenotypic rescue was associated with restoration of the excitability of inhibitory interneurons in the hippocampal dentate gyrus, an important area for seizure propagation. Reduced excitability of dentate granule neurons in response to strong depolarizing stimuli was also observed.

The beneficial effects of CBD on inhibitory neurotransmission were mimicked and occluded by an antagonist of GPR55, suggesting that therapeutic effects of CBD are mediated through this lipid-activated G protein-coupled receptor.

Our results provide critical preclinical evidence supporting treatment of epilepsy and autistic-like behaviors linked to DS with CBD. We also introduce antagonism of GPR55 as a potential therapeutic approach by illustrating its beneficial effects in DS mice.

Our study provides essential preclinical evidence needed to build a sound scientific basis for increased medicinal use of CBD.”

https://www.ncbi.nlm.nih.gov/pubmed/28973916

http://www.pnas.org/content/early/2017/09/26/1711351114

Is cannabis an effective treatment for joint pain?

Image result for Clin Exp Rheumatol.

“Cannabis has been used to treat pain for thousands of years.

However, since the early part of the 20th century, laws restricting cannabis use have limited its evaluation using modern scientific criteria. Over the last decade, the situation has started to change because of the increased availability of cannabis in the United States for either medical or recreational purposes, making it important to provide the public with accurate information as to the effectiveness of the drug for joint pain among other indications.

The major psychotropic component of cannabis is Δ9-tetrahydrocannabinol (THC), one of some 120 naturally occurring phytocannabinoids. Cannabidiol (CBD) is another molecule found in herbal cannabis in large amounts. Although CBD does not produce psychotropic effects, it has been shown to produce a variety of pharmacological effects. Hence, the overall effects of herbal cannabis represent the collective activity of THC, CBD and a number of minor components.

The action of THC is mediated by two major G-protein coupled receptors, cannabinoid receptor type 1 (CB1) and CB2, and recent work has suggested that other targets may also exist. Arachidonic acid derived endocannabinoids are the normal physiological activators of the two cannabinoid receptors.

Natural phytocannabinoids and synthetic derivatives have produced clear activity in a variety of models of joint pain in animals. These effects are the result of both inhibition of pain pathway signalling (mostly CB1) and anti-inflammatory effects (mostly CB2). There are also numerous anecdotal reports of the effectiveness of smoking cannabis for joint pain.

Indeed, it is the largest medical request for the use of the drug. However, these reports generally do not extend to regulated clinical trials for rheumatic diseases. Nevertheless, the preclinical and human data that do exist indicate that the use of cannabis should be taken seriously as a potential treatment of joint pain.”

https://www.ncbi.nlm.nih.gov/pubmed/28967368

Cannabidiol and Palmitoylethanolamide are anti-inflammatory in the acutely inflamed human colon.

Clinical Science “We sought to quantify the anti-inflammatory effects of two cannabinoid drugs: cannabidiol (CBD) and palmitoylethanolamide (PEA), in cultured cell lines and compared this effect with experimentally inflamed explant human colonic tissue.  These effects were explored in acutely and chronically inflamed colon, using inflammatory bowel disease and appendicitis explants.

Results:   IFNγ and TNFα treatment increased phosphoprotein and cytokine levels in Caco-2 cultures and colonic explants.  Phosphoprotein levels were significantly reduced by PEA or CBD in Caco-2 cultures and colonic explants.  CBD and PEA prevented increases in cytokine production in explant colon, but not in Caco-2 cells. CBD effects were blocked by the CB2antagonist AM630 and TRPV1 antagonist SB366791.  PEA effects were blocked by the PPARα antagonist GW6471.  PEA and CBD were anti-inflammatory in IBD and appendicitis explants.

Conclusion: PEA and CBD are anti-inflammatory in the human colon.  This effect is not seen in cultured epithelial cells. Appropriately sized clinical trials should assess their efficacy.”

https://www.ncbi.nlm.nih.gov/pubmed/28954820

http://www.clinsci.org/content/early/2017/09/26/CS20171288

Efficacy and Tolerability of Phytomedicines in Multiple Sclerosis Patients: A Review.

 CNS Drugs “Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disorder of the central nervous system (CNS) that can cause cognition, mobility, and sensory impairments. It is considered one of the most common non-traumatic causes of disability in the world. The aim of the present article was to review the clinical evidence related to medicinal plants in the management of MS symptoms. Electronic databases, including the Cochrane Library, Pubmed, and Scopus, were searched for entries from 1966 to February 2017. Only clinical studies were included in this review. Different medicinal plants have positive effects on MS, including Andrographis paniculata, Boswellia papyrifera, Ruta graveolens, Vaccinium spp., Camellia sinensis, Panax ginseng, Aloysia citrodora, Ginkgo biloba, Oenothera biennis, and Cannabis sativa. C. sativa had the highest level of clinical evidence, supporting its efficacy in MS symptoms. Proanthocyanidins, ginkgo flavone glycosides, ginsenosides, epigallocatechin-3-gallate, cannabinoids (including delta-9-tetrahydrocannabinol and cannabidiol), boswellic acid, and andrographolide were presented as the main bioactive components of medicinal plants with therapeutic benefits in MS. The main complications of MS in which natural drugs were effective include spasticity, fatigue, scotoma, incontinence, urinary urgency, nocturia, memory performance, functional performance, and tremor. Herbal medicines were mostly well tolerated, and the adverse effects were limited to mild to moderate. Further well-designed human studies with a large sample size and longer follow-up period are recommended to confirm the role of medicinal plants and their metabolites in the management of MS.” https://www.ncbi.nlm.nih.gov/pubmed/28948486
]]>