Cannabinoid Profiling of Hemp Seed Oil by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry.

 Image result for frontiers in plant science

“Hemp seed oil is well known for its nutraceutical, cosmetic and pharmaceutical properties due to a perfectly balanced content of omega 3 and omega 6 polyunsaturated fatty acids. Its importance for human health is reflected by the success on the market of organic goods in recent years.

However, it is of utmost importance to consider that its healthy properties are strictly related to its chemical composition, which varies depending not only on the manufacturing method, but also on the hemp variety employed. In the present work, we analyzed the chemical profile of ten commercially available organic hemp seed oils. Their cannabinoid profile was evaluated by a liquid chromatography method coupled to high-resolution mass spectrometry.

Besides tetrahydrocannabinol and cannabidiol, other 30 cannabinoids were identified for the first time in hemp seed oil.

The results obtained were processed according to an untargeted metabolomics approach. The multivariate statistical analysis showed highly significant differences in the chemical composition and, in particular, in the cannabinoid content of the hemp oils under investigation.”

https://www.ncbi.nlm.nih.gov/pubmed/30815007

https://www.frontiersin.org/articles/10.3389/fpls.2019.00120/full

Cannabis and Its Secondary Metabolites: Their Use as Therapeutic Drugs, Toxicological Aspects, and Analytical Determination.

medicines-logo

“Although the medicinal properties of Cannabis species have been known for centuries, the interest on its main active secondary metabolites as therapeutic alternatives for several pathologies has grown in recent years. This potential use has been a revolution worldwide concerning public health, production, use and sale of cannabis, and has led inclusively to legislation changes in some countries. The scientific advances and concerns of the scientific community have allowed a better understanding of cannabis derivatives as pharmacological options in several conditions, such as appetite stimulation, pain treatment, skin pathologies, anticonvulsant therapy, neurodegenerative diseases, and infectious diseases. However, there is some controversy regarding the legal and ethical implications of their use and routes of administration, also concerning the adverse health consequences and deaths attributed to marijuana consumption, and these represent some of the complexities associated with the use of these compounds as therapeutic drugs. This review comprehends the main secondary metabolites of Cannabis, approaching their therapeutic potential and applications, as well as their potential risks, in order to differentiate the consumption as recreational drugs. There will be also a focus on the analytical methodologies for their analysis, in order to aid health professionals and toxicologists in cases where these compounds are present.”

Complete biosynthesis of cannabinoids and their unnatural analogues in yeast

Image result for nature journal

“Cannabis sativa L. has been cultivated and used around the globe for its medicinal properties for millennia. Some cannabinoids, the hallmark constituents of Cannabis, and their analogues have been investigated extensively for their potential medical applications. Certain cannabinoid formulations have been approved as prescription drugs in several countries for the treatment of a range of human ailments. However, the study and medicinal use of cannabinoids has been hampered by the legal scheduling of Cannabis, the low in planta abundances of nearly all of the dozens of known cannabinoids, and their structural complexity, which limits bulk chemical synthesis. Here we report the complete biosynthesis of the major cannabinoids cannabigerolic acid, Δ9-tetrahydrocannabinolic acid, cannabidiolic acid, Δ9-tetrahydrocannabivarinic acid and cannabidivarinic acid in Saccharomyces cerevisiae, from the simple sugar galactose. To accomplish this, we engineered the native mevalonate pathway to provide a high flux of geranyl pyrophosphate and introduced a heterologous, multi-organism-derived hexanoyl-CoA biosynthetic pathway. We also introduced the Cannabis genes that encode the enzymes involved in the biosynthesis of olivetolic acid, as well as the gene for a previously undiscovered enzyme with geranylpyrophosphate:olivetolate geranyltransferase activity and the genes for corresponding cannabinoid synthases. Furthermore, we established a biosynthetic approach that harnessed the promiscuity of several pathway genes to produce cannabinoid analogues. Feeding different fatty acids to our engineered strains yielded cannabinoid analogues with modifications in the part of the molecule that is known to alter receptor binding affinity and potency. We also demonstrated that our biological system could be complemented by simple synthetic chemistry to further expand the accessible chemical space. Our work presents a platform for the production of natural and unnatural cannabinoids that will allow for more rigorous study of these compounds and could be used in the development of treatments for a variety of human health problems.”

https://www.nature.com/articles/s41586-019-0978-9

“Yeast can produce THC, CBD, novel cannabinoids”  https://www.upi.com/Science_News/2019/02/28/Yeast-can-produce-THC-CBD-novel-cannabinoids/4411551303863/

“Yeast produce low-cost, high-quality cannabinoids”  https://www.eurekalert.org/pub_releases/2019-02/uoc–ypl022419.php

“Engineered yeast can brew up the active ingredients in cannabis plants”  https://www.newscientist.com/article/2195103-engineered-yeast-can-brew-up-the-active-ingredients-in-cannabis-plants/

“High grade cannabis chemicals produced using brewing yeast”  https://www.independent.co.uk/news/science/cannabis-drug-produced-yeast-marijuana-thc-cbd-medicine-california-a8799576.html

CBN: The cancer fighting Cannabinoid

Flyer image

“CBN, cannabinol, is a mildly psychoactive cannabinoid found within the cannabis plant. We examine the very complex mechanisms that give allowance for this cannabinoids entrance into the cell membrane and its effect on cannabinoid receptors and the inhibition of the enzyme adenylate cyclase that is responsible for phosphate production. Prior study bears weight accordingly; we examine this phosphate as a potent energy source, the enzymes responsible for cell replication cycle and inhibition thereof. Moreover, how IL-2, (Interleukin-2), a type of cytokine signaling molecule in the immune system stops being produced when immune T cells are exposed to cannabinoids. How IL-2 stimulates the cell cycle via promotion of the c-Fos protein and is responsible for modulation of the immune response. This is shown by Faubert and Kaminski, that administration of CBN can slow cell replication and endure cell death (apoptosis).”

http://www.imedpub.com/proceedings/cbn-the-cancer-fighting-cannabinoid-5528.html

“Programmed Cell Death (Apoptosis)” http://www.ncbi.nlm.nih.gov/books/NBK26873/

Lung alveolar tissue destruction and protein citrullination in diesel exhaust exposed mouse lungs.

Basic & Clinical Pharmacology & Toxicology banner

“Humanity faces an increasing impact of air pollution worldwide, including threats to human health. Air pollutants prompt and promote chronic inflammation, tumourigenesis, autoimmune and other destructive processes in the human body.

Post-translational modification of proteins, e.g. citrullination, results from damaging attacks of pollutants, including smoking, air pollution and others, rendering host tissues immunogenic. Citrullinated proteins and citrullinating enzymes, deiminases, are more prevalent in patients with COPD and correlate with ongoing inflammation and oxidative stress.

In this study, we installed an in-house-designed diesel exhaust delivery and cannabidiol vaporization system where mice were exposed to relevant, urban traffic-related levels of diesel exhaust for 14 days and assessed integrity of alveolar tissue, gene expression shifts and changes in protein content in the lungs and other tissues of exposed mice. Systemic presence of modified proteins was also tested.

The protective effect of phytocannabinoids was investigated as well.

Data obtained in our study show subacute effects of diesel exhaust on mouse lung integrity and protein content. Emphysematous changes are documented in exposed mouse lungs. In parallel, increased levels of citrulline were detected in the alveolar lung tissue and peripheral blood of exposed mice.

Pretreatment with vaporized cannabidiol ameliorated some damaging effects.

Results reported hereby provide new insights into subacute lung tissue changes that follow diesel exhaust exposure and suggest possible dietary and/or other therapeutic interventions for maintaining lung health and healthy ageing.”

https://www.ncbi.nlm.nih.gov/pubmed/30801928

https://onlinelibrary.wiley.com/doi/abs/10.1111/bcpt.13213

Cannabis Oil Use by Adolescents and Young Adults With Inflammatory Bowel Disease.

Image result for j pediatr gastroenterol nutr

“The aim of the study was to describe use of oral or sublingual cannabis oil (CO) by adolescent and young adult patients with inflammatory bowel disease (IBD).

METHODS:

A descriptive study of IBD patients 13 to 23 years of age seen between January 2015 through December 2017 at Children’s Hospital Colorado. Information obtained included chart abstraction, electronic and interview self-report, and serum cannabinoid levels. We compared CO users and cannabis non-users for clinical characteristics and perceptions of risk. Users of CO provided information on routes, patterns, motivations, and perceived benefits and problems with use.

RESULTS:

The 15 users and 67 non-users were similar for clinical characteristics and pain and appetite scores. 9 of 15 (60%) CO users had used in the past 30 days, an average of 22 ± 9 times; and 4 used daily. A variety of strengths and CBD:THC ratios were reported. Most common perceived effect of use was on sleep quality, nausea, and increase in appetite. Of the 15 users, 6 used only CO and no additional forms of cannabis. Of these 6 CO only users, 5 reported a medical reason for use, most commonly to relieve pain.

CONCLUSIONS:

Adolescent and young adults with IBD used oral CO and many used other cannabis products as well. Users perceived some medical benefit. Care teams should strive for open communication about use until further information on safety and efficacy becomes available.”

https://www.ncbi.nlm.nih.gov/pubmed/30801394

Effect of cannabis on weight and metabolism in first-episode non-affective psychosis: Results from a three-year longitudinal study.

Image result for sage journals

“Recent evidence indicates a protective effect of cannabis on weight gain and related metabolic alterations. However, there are no previous studies on the long-term longitudinal effects of cannabis on first-episode drug-naïve patients, which would thereby avoid the confounding effects of chronicity and previous treatment exposure.

We aimed to explore the effect of cannabis smoking on weight and lipid/glycaemic metabolic measures in a sample of first-episode non-affective psychosis patients.

RESULTS::

Cannabis users at baseline presented a lower weight ( F=14.85, p<0.001), body mass index ( F=13.14, p<0.001), total cholesterol ( F=4.85, p=0.028) and low-density lipoprotein-cholesterol ( F=6.26, p=0.013) compared to non-users. These differences were also observed after three years: weight ( F=8.07, p=0.005), body mass index ( F=4.66, p=0.032) and low-density lipoprotein-cholesterol ( F=3.91, p=0.049). Moreover, those patients discontinuing cannabis use presented a higher increase in weight ( F=2.98, p=0.052), body mass index ( F=2.73, p=0.067) and triglyceride-high-density lipoprotein ratio ( F=2.72, p=0.067) than the ‘non-users’ and ‘continuers’.

CONCLUSIONS::

The study suggests that cannabis use may produce a protective effect against weight gain and related metabolic alterations in psychosis.”

https://www.ncbi.nlm.nih.gov/pubmed/30702972

https://doi.org/10.1177/0269881118822173

Palmitoylethanolamide and Cannabidiol Prevent Inflammation-induced Hyperpermeability of the Human Gut In Vitro and In Vivo—A Randomized, Placebo-controlled, Double-blind Controlled Trial

Inflammatory Bowel Diseases

“We aimed to examine, for the first time, the effect of cannabidiol (CBD) and palmitoylethanolamide (PEA) on the permeability of the human gastrointestinal tract in vitro, ex vivo, and in vivo.

Results
In vitro, PEA, and CBD decreased the inflammation-induced flux of dextrans (P< 0.0001), sensitive to PPARα and CB1 antagonism, respectively. Both PEA and CBD were prevented by PKA, MEK/ERK, and adenylyl cyclase inhibition (P < 0.001). In human mucosa, inflammation decreased claudin-5 mRNA, which was prevented by CBD (P < 0.05). Palmitoylethanolamide and cannabidiol prevented an inflammation-induced fall in TRPV1 and increase in PPARα transcription (P< 0.0001). In vivo, aspirin caused an increase in the absorption of lactulose and mannitol, which were reduced by PEA or CBD (P < 0.001).

Conclusion

Cannabidiol and palmitoylethanolamide reduce permeability in the human colon. These findings have implications in disorders associated with increased gut permeability, such as inflammatory bowel disease.”

https://academic.oup.com/ibdjournal/advance-article-abstract/doi/10.1093/ibd/izz017/5341970?redirectedFrom=fulltext

DMH-cannabidiol, a cannabidiol analog with reduced cytotoxicity, inhibits TNF production by targeting NF-kB activity by activating A2A receptor and inhibiting p38.

Toxicology and Applied Pharmacology

“Cannabidiol (CBD) is a natural compound with psychoactive therapeutic properties well described. Conversely, the immunological effects of CBD are still poorly explored. In this study, the potential anti-inflammatory effects and underlying mechanisms of CBD and its analog Dimethyl-Heptyl-Cannabidiol (DMH-CBD) were investigated using RAW 264.7 macrophages. CBD and DMH-CBD suppressed LPS-induced TNF production and NF-kB activity in a concentration-dependent manner. Both compounds reduced the NF-kB activity in a μM concentration range: CBD (IC50 = 15 μM) and DMH-CBD (IC50 = 38 μM). However, the concentrations of CBD that mediated NF-kB inhibition were similar to those that cause cytotoxicity (LC50 = 58 μM). Differently, DMH-CBD inhibited the NF-kB activation without cytotoxic effects at the same concentrations, although it provokes cytotoxicity at long-term exposure. The inhibitory action of the DMH-CBD on NF-kB activity was not related to the reduction in IkBα degradation or either p65 (NF-kB) translocation to the nucleus, although it decreased p38 MAP kinase phosphorylation. Additionally, 8-(3-Chlorostyryl) caffeine (CSC), an A2Aantagonist, reversed the effect of DMH-CBD on NF-kB activity in a concentration-dependent manner. Collectively, our results demonstrated that CBD reduced the NF-kB activity at concentrations intimately associated with the reduction in cell viability, DMH-CBD reduce the NF-kB activity and by activating A2A receptors and inhibits p38 phosphorylation.”

https://www.ncbi.nlm.nih.gov/pubmed/30796934

https://www.sciencedirect.com/science/article/pii/S0041008X19300663?via%3Dihub

The Association between Cannabis Product Characteristics and Symptom Relief

Scientific Reports

“Across product characteristics, only higher THC levels were independently associated with greater symptom relief and prevalence of positive and negative side effects. In contrast, CBD potency levels were generally not associated with significant symptom changes or experienced side effects.”

https://www.ncbi.nlm.nih.gov/pubmed/30804402

https://www.nature.com/articles/s41598-019-39462-1

“Notorious psychoactive chemical THC more important for therapeutic effects in cannabis than previously believed. Contrary to popular media-reports and scientific dogma, the psychoactive chemical, tetrahydrocannabinol or “THC,” showed the strongest correlation with therapeutic relief and far less evidence for the benefits of relying on the more socially acceptable chemical, cannabidiol or “CBD.””  https://news.unm.edu/news/notorious-psychoactive-chemical-thc-more-important-for-therapeutic-effects-in-cannabis-than-previously-believed

“THC more important for therapeutic effects in cannabis than previously believed”  https://medicalxpress.com/news/2019-02-thc-important-therapeutic-effects-cannabis.html

“THC found more important for therapeutic effects in cannabis than originally thought” https://www.sciencedaily.com/releases/2019/02/190226112353.htm

“Study: Patients Find More Relief In Marijuana‘s Physchoactive Compound THC Than In CBD.https://www.forbes.com/sites/javierhasse/2019/02/27/study-patients-find-more-relief-in-marijuanas-physchoactive-compound-thc-than-in-cbd/#384ee158717a