“Cannabidiol reduced the frequency of convulsive seizures compared with placebo in Dravet syndrome, a childhood epilepsy disorder with a high mortality rate and no approved treatment in the United States, reported a clinical trial in the New England Journal of Medicine.” http://jamanetwork.com/journals/jama/fullarticle/2645099
Tag Archives: CBD
The effect of Pro NanoLipospheres (PNL) formulation containing natural absorption enhancers on the oral bioavailability of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in a rat model.
“The lipophilic phytocannabinoids cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) show therapeutic efficacy in various medical conditions. Both molecules are poorly water soluble and subjected to extensive first pass metabolism in the gastrointestinal tract, leading to a limited oral bioavailability of approximately 9%. We have developed an advanced lipid based Self-Emulsifying Drug Delivery System termed Advanced Pro-NanoLiposphere (PNL) pre-concentrate. The PNL is composed of lipid and emulsifying excipients of GRAS status and are known to increase solubility and reduce Phase I metabolism of lipophilic active compounds. Advanced PNLs are PNLs with an incorporated natural absorption enhancers. These molecules are natural alkaloids and phenolic compounds which were reported to inhibit certain phase I and phase II metabolism processes. Here we use piperine, curcumin and resveratrol to formulate the Advanced-PNL formulations. Consequently, we have explored the utility of these Advanced-PNLs on CBD and THC oral bioavailability. Oral administration of CBD-piperine-PNL resulted in 6-fold in AUC compared to CBD solution, proving to be the most effective of the screened formulations. The same trend was found in pharmacokinetic experiments of THC-piperine-PNL with resulted in a 9.3-fold increase in AUC as compared to THC solution. Our Piperine-PNL can be used as a platform for synchronized delivery of piperine and CBD or THC to the enterocyte site. This co-localization provides an increase in CBD and THC bioavailability by its effect at the pre-enterocyte and the enterocyte levels of the absorption process. The extra augmentation in the absorption of CBD and THC by incorporating piperine into PNL is attributed to the inhibition of Phase I and phase II metabolism by piperine in addition to the Phase I metabolism and P-gp inhibition by PNL. These novel results pave the way to utilize piperine-PNL delivery system for other poorly soluble, highly metabolized compounds that currently cannot be administered orally.” https://www.ncbi.nlm.nih.gov/pubmed/28736128 http://www.sciencedirect.com/science/article/pii/S0928098717304025]]>
[Cannabidiol: its use in refractory epilepsies].
“Some epileptic syndromes are characterised by seizures that are difficult to control and are associated to delayed neuropsychomotor development, which results in a deterioration in the patient’s quality of life as well as in that of his or her family.
AIM:
To evaluate the use of cannabidiol as adjuvant therapy in patients with refractory epilepsies.PATIENTS AND METHODS:
An observational study was conducted by means of a survey addressed to the patient’s caregiver. Data collected included information about the patient and the caregiver, changes observed in the seizures, neuropsychological effects, side effects and the family’s overall perception following the use of cannabidiol.RESULTS:
The evaluation examined 15 patients with refractory epilepsies, who received cannabidiol over a period ranging from one month to one year. The frequency of seizures decreased in 40% of the patients, 60% of the patients were seen to have control over 50% of their seizures and in 27% of them the seizures disappeared completely. Neurocognitive changes were also reported: behaviour improved in 73%; 60% reported an improvement in language; in 50% sleep improved; 43% reported improvements in eating habits; and 100% said their mood had improved. The overall perception of the illness was that there had been improvements in 73% of respondents. The most common side effects were drowsiness and fatigue.CONCLUSIONS:
These results suggest a possible beneficial effect of cannabidiol on the control of seizures and on the improvement of certain neurocognitive aspects in patients with refractory epilepsies.” https://www.ncbi.nlm.nih.gov/pubmed/28726233Antinociceptive effects of HUF-101, a fluorinated cannabidiol derivative.
“Cannabidiol (CBD) is a phytocannabinoid with multiple pharmacological effects and several potential therapeutic properties. Its low oral bioavailability, however, can limit its clinical use. Preliminary results indicate that fluorination of the CBD molecule increases its pharmacological potency. Here, we investigated whether HUF-101 (3, 10, and 30mg/kg), a fluorinated CBD analogue, would induce antinociceptive effects. These findings show that HUF-101 produced antinociceptive effects at lower doses than CBD, indicating that the addition of fluoride improved its pharmacological profile. Furthermore, some of the antinociceptive effects of CBD and HUF-101 effects seem to involve the activation of CB1 and CB2 receptors.” https://www.ncbi.nlm.nih.gov/pubmed/28720466 http://www.sciencedirect.com/science/article/pii/S0278584617302233]]>
Sativex® effects on promoter methylation and on CNR1/CNR2 expression in peripheral blood mononuclear cells of progressive multiple sclerosis patients.
“Multiple sclerosis (MS) is a chronic demyelinating central nervous system (CNS) disease that involve oligodendrocyte loss and failure to remyelinate damaged brain areas causing a progressive neurological disability. Studies in MS mouse model suggest that cannabinoids ameliorate symptoms as spasticity, tremor and pain reducing inflammation via cannabinoid-mediated system. The aim of our study is to investigate the changes in cannabinoid type 1 (CNR1) and 2 (CNR2) receptors mRNA expression levels and promoter methylation in peripheral blood mononuclear cells (PBMCs) of MS secondary progressive (MSS-SP) patients treated with Sativex®. These results suggest that the different expression of cannabinoid receptors by Sativex® treatment in leukocytes might be regulated through a molecular mechanism that involve interferon modulation.” https://www.ncbi.nlm.nih.gov/pubmed/28716266 http://www.jns-journal.com/article/S0022-510X(17)30392-1/fulltext]]>
A Conversion of Oral Cannabidiol to Delta9-Tetrahydrocannabinol Seems Not to Occur in Humans
“Cannabidiol (CBD), a major cannabinoid of hemp, does not bind to CB1 receptors and is therefore devoid of psychotomimetic properties. Under acidic conditions, CBD can be transformed to delta9-tetrahydrocannabinol (THC) and other cannabinoids. It has been argued that this may occur also after oral administration in humans. However, the experimental conversion of CBD to THC and delta8-THC in simulated gastric fluid (SGF) is a highly artificial approach that deviates significantly from physiological conditions in the stomach; therefore, SGF does not allow an extrapolation to in vivo conditions. Unsurprisingly, the conversion of oral CBD to THC and its metabolites has not been observed to occur in vivo, even after high doses of oral CBD. In addition, the typical spectrum of side effects of THC, or of the very similar synthetic cannabinoid nabilone, as listed in the official Summary of Product Characteristics (e.g., dizziness, euphoria/high, thinking abnormal/concentration difficulties, nausea, tachycardia) has not been observed after treatment with CBD in double-blind, randomized, controlled clinical trials. In conclusion, the conversion of CBD to THC in SGF seems to be an in vitro artifact.
Over 40 years of research on CBD does not suggest a conversion of CBD to delta9-THC and/or other cannabinoids in vivo after oral administration. Such transformation occurs under artificial conditions, but is without any relevance for an oral therapy with CBD.” http://online.liebertpub.com/doi/full/10.1089/can.2017.0009?_ga=2.206725530.884504339.1500032065-2115951543.1500032065#
“Cannabidiol Does Not Convert to THC In Vivo. Although CBD Can Be Transformed to THC Under Acidic Conditions, the Conversion of Oral CBD Doesn’t Occur In Vivo” http://www.genengnews.com/gen-exclusives/cannabidiol-does-not-convert-to-thc-iin-vivoi/77900938
An Overview on Medicinal Chemistry of Synthetic and Natural Derivatives of Cannabidiol.
“Cannabidiol (CBD) has been traditionally used in Cannabis-based preparation, however historically, it has received far less interest as a single drug than the other components of Cannabis. Currently, CBD generates considerable interest due to its beneficial neuroprotective, antiepileptic, anxiolytic, antipsychotic, and anti-inflammatory properties. Therefore, the CBD scaffold becomes of increasing interest for medicinal chemists. This review provides an overview of the chemical structure of natural and synthetic CBD derivatives including the molecular targets associated with these compounds. A clear identification of their biological targets has been shown to be still very challenging.” https://www.ncbi.nlm.nih.gov/pubmed/28701957

“Despite its controversial nature, the use of medical marijuana and cannabis-derived medicinal products grows more popular with each passing year. As of November 2016, over 40 states have passed legislation regarding the use of either medical marijuana or cannabidiol products. Many providers have started encountering patients experimenting with cannabis products for a wide range of conditions. While the debate continues regarding these agents for both medicinal and recreational use in the general population, special consideration needs to be made for pediatric use. This review will deliver the history of marijuana use and legislation in the United States in addition to the currently available medical literature to equip pediatric health care providers with resources to provide patients and their parents the best recommendation for safe and appropriate use of cannabis-containing compounds.”