Δ9-Tetrahydrocannabinolicacid synthase production in Pichia pastoris enables chemical synthesis of cannabinoids.

“Δ9-tetrahydrocannabinol (THC) is of increasing interest as a pharmaceutical and bioactive compound.

Chemical synthesis of THC uses a laborious procedure and does not satisfy the market demand.

The implementation of biocatalysts for specific synthesis steps might be beneficial for making natural product availability independent from the plant.

Δ9-Tetrahydrocannabinolicacid synthase (THCAS) from C. sativa L. catalyzes the cyclization of cannabigerolic acid (CBGA) to Δ9-tetrahydrocannabinolic acid (THCA), which is non-enzymatically decarboxylated to THC.

In conclusion, production of THCAS in Pichia pastoris MutS KM71 KE1, subsequent isolation, and its application in a two-liquid phase setup enables the synthesis of THCA on a mg scale.”

http://www.ncbi.nlm.nih.gov/pubmed/26197418

The dual effects of delta(9)-tetrahydrocannabinol on cholangiocarcinoma cells: anti-invasion activity at low concentration and apoptosis induction at high concentration.

“Currently, only gemcitabine plus platinum demonstrates the considerable activity for cholangiocarcinoma.

The anticancer effect of Delta (9)-tetrahydrocannabinol (THC), the principal active component of cannabinoids has been demonstrated in various kinds of cancers.

We therefore evaluate the antitumor effects of THC on cholangiocarcinoma cells.

Both cholangiocarcinoma cell lines and surgical specimens from cholangiocarcinoma patients expressed cannabinoid receptors.

THC inhibited cell proliferation, migration and invasion, and induced cell apoptosis.

THC also decreased actin polymerization and reduced tumor cell survival in anoikis assay. pMEK1/2 and pAkt demonstrated the lower extent than untreated cells.

Consequently, THC is potentially used to retard cholangiocarcinoma cell growth and metastasis.” http://www.ncbi.nlm.nih.gov/pubmed/19916793 

“Cholangiocarcinoma is an epithelial cell malignancy arising from varying locations within the biliary tree showing markers of cholangiocyte differentiation. The most contemporary classification based on anatomical location includes intrahepatic, perihilar, and distal cholangiocarcinoma… Understanding of cholangiocarcinoma biology, the oncogenic landscape of this disease, and its complex interaction with the tumour microenvironment could lead to optimum therapies with improvement in patient survival… Hopefully, personalised or precision medicine is in the near future for the treatment of cholangiocarcinoma” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4069226/

 “Cholangiocarcinomas (bile duct cancers) are a heterogeneous group of malignancies arising from the epithelial cells of the intrahepatic, perihilar and extrahepatic bile ducts.”   http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3731530/

“Cholangiocarcinoma (CC) is the second most common primary hepatic malignancy after hepatocellular cancer. CC accounts for approximately 10%-25% of all hepatobiliary malignancies. CC is a rare malignancy in Western countries, but more common in Asia. There are several established risk factors for CC, including parasitic infections, primary sclerosing cholangitis, biliary-duct cysts, hepatolithiasis, and toxins. Other less-established potential risk factors include inflammatory bowel disease, hepatitis C virus, hepatitis B virus, cirrhosis, diabetes, obesity, alcohol drinking, tobacco smoking, and host genetic polymorphisms.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125451/

“Cholangiocarcinoma is a highly malignant cancer of the biliary tract with a poor prognosis, which often arises from conditions causing long-term inflammation, injury, and reparative biliary epithelial cell proliferation. Several conditions are known to be major risk factors for cancer in the biliary tract or gallbladder, including primary sclerosing cholangitis, liver fluke infection, pancreaticobiliary maljunction, and chemical exposure in proof-printing workers.”  http://www.ncbi.nlm.nih.gov/pubmed/24895231

http://www.thctotalhealthcare.com/category/cholangiocarcinoma/

Endocannabinoid signaling in female reproductive events: a potential therapeutic target?

“Nearly 30 years after the discovery in 1964 of the psychoactive ingredient of cannabis (Cannabis sativa), Δ9-tetrahydrocannabinol, its endogenous counterparts were discovered and collectively termed endocannabinoids (eCBs): N-arachidonoylethanolamine (anandamide) in 1992 and 2-arachidonoylglycerol in 1995.

Since then, intense research has identified additional eCBs and an ensemble of proteins that bind, synthesize and degrade them, the so-called eCB system.

Altogether, these new compounds have been recognized as key mediators of several aspects of human pathophysiology, and in particular of female fertility.

Here, the main features of the eCB system are presented, in order to put in a better perspective the relevance of eCB signaling in virtually all steps of human reproduction and to highlight emerging hopes that elements of this system might indeed become novel targets to combat fertility problems.”

http://www.ncbi.nlm.nih.gov/pubmed/26126134

Chronic administration of Δ9-tetrahydrocannabinol induces intestinal anti-inflammatory microRNA expression during acute simian immunodeficiency virus infection of rhesus macaques.

“Recreational and medical use of cannabis among human immunodeficiency virus (HIV)-infected individuals has increased in recent years. In simian immunodeficiency virus (SIV)-infected macaques, chronic administration of Δ9-tetrahydrocannabinol (Δ9-THC) inhibited viral replication and intestinal inflammation and slowed disease progression…

These results support a role for differential miRNA induction in THC-mediated suppression of intestinal inflammation. Whether similar miRNA modulation occurs in other tissues requires further investigation.

IMPORTANCE:

Gastrointestinal (GI) tract disease/inflammation is a hallmark of HIV/SIV infection.

Previously, we showed that chronic treatment of SIV-infected macaques with Δ9-tetrahydrocannabinol (Δ9-THC) increased survival and decreased viral replication and infection-induced gastrointestinal inflammation.

Here, we show that chronic THC administration to SIV-infected macaques induced an anti-inflammatory microRNA expression profile in the intestine…

Overall, our results show that selective upregulation of anti-inflammatory miRNA expression contributes to THC-mediated suppression of gastrointestinal inflammation and maintenance of intestinal homeostasis.”

http://www.ncbi.nlm.nih.gov/pubmed/25378491

http://www.thctotalhealthcare.com/category/hivaids/

Delta-9-tetrahydrocannabinol protects cardiac cells from hypoxia via CB2 receptor activation and nitric oxide production.

“Delta-9-tetrahydrocannabinol (THC), the major active component of marijuana, has a beneficial effect on the cardiovascular system during stress conditions…

The present study was designed to investigate the central (CB1) and the peripheral (CB2)cannabinoid receptor expression in neonatal cardiomyoctes and possible function in the cardioprotection of THC from hypoxia.

The antagonist for the CB2, but not CB1 receptor antagonist abolished the protective effect of THC.

In agreement with these results using RT-PCR, it was shown that neonatal cardiac cells express CB2, but not CB1 receptors.

Involvement of NO in the signal transduction pathway activated by THC through CB2 was examined. It was found that THC induces nitric oxide (NO) production by induction of NO synthase (iNOS) via CB2 receptors.

L-NAME (NOS inhibitor, 100 microM) prevented the cardioprotection provided by THC.

Taken together, our findings suggest that THC protects cardiac cells against hypoxia via CB2 receptor activation by induction of NO production.

An NO mechanism occurs also in the classical pre-conditioning process; therefore, THC probably pre-trains the cardiomyocytes to hypoxic conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/16444588

Δ9-Tetrahydrocannabinol attenuates allogeneic host-versus-graft response and delays skin graft rejection through activation of cannabinoid receptor 1 and induction of myeloid-derived suppressor cells.

“Immune cells have been shown to express cannabinoid receptors and to produce endogenous ligands. Moreover, activation of cannabinoid receptors on immune cells has been shown to trigger potent immunosuppression.

Despite such studies, the role of cannabinoids in transplantation, specifically to prevent allograft rejection, has not, to our knowledge, been investigated previously. In the current study, we tested the effect of THC on the suppression of HvGD as well as rejection of skin allografts…

Together, our research shows, for the first time to our knowledge, that targeting cannabinoid receptors may provide a novel treatment modality to attenuate HvGD and prevent allograft rejection.”

http://www.ncbi.nlm.nih.gov/pubmed/26034207

Cannabinoid compounds in South African Cannabis sativa L.

“Dagga (Cannabis sativa L.) samples were collected from various geographical regions of South Africa. These were classified into age, sex and plant part and the cannabinoids were analysed quantitatively by gas-liquid chromatography and mass spectrometry. Analytical results show that there appears to be at least three chemovariants of Cannabis sativa growing in South Africa with respect to relative cannabinoid content. One of these variants appears to be unique to Southern Africa. It also appears that South African C. sativa ranks among the world’s more potent C. sativa variants in terms of its delta 9-tetrahydrocannabinol content.”

http://www.ncbi.nlm.nih.gov/pubmed/6102121

Arachidonylethanolamide induces apoptosis of human glioma cells through vanilloid receptor-1.

“The anti-tumor properties of cannabinoids have recently been evidenced, mainly with delta9-tetrahydrocannabinol (THC).

Here we investigated whether the most potent endogenous cannabinoid, arachidonylethanolamide (AEA), could be a candidate.

We observed that AEA induced apoptosis in long-term and recently established glioma cell lines via aberrantly expressed vanilloid receptor-1 (VR1).

In contrast with their role in THC-mediated death, both CB1 and CB2 partially protected glioma against AEA-induced apoptosis.

These data show that the selective targeting of VR1 by AEA or more stable analogues is an attractive research area for the treatment of glioma.”

http://www.ncbi.nlm.nih.gov/pubmed/15453094

http://www.thctotalhealthcare.com/category/gllomas/

Arachidonyl ethanolamide induces apoptosis of uterine cervix cancer cells via aberrantly expressed vanilloid receptor-1.

“Delta(9)-Tetrahydrocannabinol, the active agent of Cannabis sativa, exhibits well-documented antitumor properties, but little is known about the possible effects mediated by endogenous cannabinoids on human tumors. In the present study, we analyzed the effect of arachidonyl ethanolamide (AEA) on cervical carcinoma (CxCa) cell lines.

The major finding was that AEA induced apoptosis of CxCa cell lines via aberrantly expressed vanilloid receptor-1, whereas AEA binding to the classical CB1 and CB2 cannabinoid receptors mediated a protective effect…

Overall, these data suggest that the specific targeting of VR1 by endogenous cannabinoids or synthetic molecules offers attractive opportunities for the development of novel potent anticancer drugs.”

http://www.ncbi.nlm.nih.gov/pubmed/15047233

http://www.thctotalhealthcare.com/category/cervical-cancer/

Differential role of cannabinoids in the pathogenesis of skin cancer.

“Cannabinoids (CB) like ∆9-tetrahydrocannabinol (THC) can induce cancer cell apoptosis and inhibit angiogenesis.

Here we investigated the role of exogenous and endogenous cannabinoids in mouse skin cancer.

THC significantly inhibited tumor growth of transplanted HCmel12 melanomas in a CB receptor-dependent manner in vivo through antagonistic effects on its characteristic pro-inflammatory microenvironment.

Our results confirm the value of exogenous cannabinoids for the treatment of melanoma…”

http://www.ncbi.nlm.nih.gov/pubmed/25921771

http://www.thctotalhealthcare.com/category/melanoma/