Dynamic of expression and localization of cannabinoid-degrading enzymes FAAH and MGLL in relation to CB1 during meiotic maturation of human oocytes.

“The endogenous cannabinoid system has been characterized in some female reproductive organs but little is known about the expression and localization pattern of cannabinoid-degrading enzymes in relation to the CB1 cannabinoid receptor in human oocytes. In this study, we focus on the investigation of the presence and differential distribution of fatty acid amide hydrolase (FAAH) and monoglyceride lipase (MGLL) in relation to CB1 during the maturation of human oocytes. We used a total of 290 human oocytes not suitable for in vitro fertilization/intracytoplasmic sperm injection (ICSI): germinal-vesicle (GV) and metaphase-I (MI) stages and metaphase-II (MII) oocytes that had not developed into an embryo after ICSI.Cannabinoid-degrading enzymes and the cannabinoid CB1 receptor were present in human oocytes. Specifically, FAAH was detected in the periphery of the oocyte from the GV to MI stage and co-localized with CB1. Later, by the MII stage, FAAH was spread within the oocyte, whereas MGLL immunostaining was homogeneous across the oocyte at all stages of maturation and only overlapped with CB1 at the GV stage. This coordinated redistribution of cannabinoid system proteins suggests a role for this system in the maturation of the female gamete.”

http://www.ncbi.nlm.nih.gov/pubmed/26948343

Nutritional n-3 PUFA Deficiency Abolishes Endocannabinoid Gating of Hippocampal Long-Term Potentiation.

“Maternal n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid, is critical during perinatal brain development. How early postnatal n-3 PUFA deficiency impacts on hippocampal synaptic plasticity is mostly unknown. Here we compared activity-dependent plasticity at excitatory and inhibitory synapses in the CA1 region of the hippocampus in weaned pups whose mothers were fed with an n-3 PUFA-balanced or n-3 PUFA-deficient diet. Normally, endogenous cannabinoids (eCB) produced by the post-synapse dually control network activity by mediating the long-term depression of inhibitory inputs (iLTD) and positively gating NMDAR-dependent long-term potentiation (LTP) of excitatory inputs. We found that both iLTD and LTP were impaired in n-3 PUFA-deficient mice. Pharmacological dissection of the underlying mechanism revealed that impairment of NMDAR-dependent LTP was causally linked to and attributable to the ablation of eCB-mediated iLTD and associated to disinhibitory gating of excitatory synapses. The data shed new light on how n-3 PUFAs shape synaptic activity in the hippocampus and provide a new synaptic substrate to the cognitive impairments associated with perinatal n-3 deficiency.”

http://www.ncbi.nlm.nih.gov/pubmed/26946127

Effects of cannabinoid receptor activation by CP55,940 on normal bladder function and irritation-induced bladder overactivity in non-awake anaesthetised rats.

“CP55,940 is a synthetic analogue of tetrahydrocannabidiol, which is a psychoactive ingredient of the Cannabis plant.

This study was designed to evaluate the effects of CP55,940 on normal bladder function in vivo and examine whether it suppresses urinary frequency induced by nociceptive stimuli in the bladder.

CP55,940 decreases bladder activity and urinary frequency induced by nociceptive stimuli, probably by suppression of bladder afferent activity. Effects of CP55,940 were abolished by both CBR antagonists. This data implicates a role for the endocannabinoid system in bladder mechanoafferent function in rats. In addition, our results show that CP55,940 reverses urinary frequency exemplified in an overactive bladder model, suggesting it could be an effective treatment for patients with lower urinary tract symptoms.”

http://www.ncbi.nlm.nih.gov/pubmed/26942594

Role of cannabinoids in gastrointestinal mucosal defense and inflammation.

“Modulating the activity of the endocannabinoid system influences various gastrointestinal physiological and pathophysiological processes, and cannabinoid receptors as well as regulatory enzymes responsible for the synthesis or degradation of endocannabinoids represent potential targets to reduce the development of gastrointestinal mucosal lesions, hemorrhage and inflammation.

Direct activation of CB1 receptors by plant-derived, endogenous or synthetic cannabinoids effectively reduces both gastric acid secretion and gastric motor activity, and decreases the formation of gastric mucosal lesions induced by stress, pylorus ligation, nonsteroidal anti-inflammatory drugs (NSAIDs) or alcohol, partly by peripheral, partly by central mechanisms.

Similarly, indirect activation of cannabinoid receptors through elevation of endocannabinoid levels by globally acting or peripherally restricted inhibitors of their metabolizing enzymes (FAAH, MAGL) or by inhibitors of their cellular uptake reduced the gastric mucosal lesions induced by NSAIDs in a CB1 receptor-dependent fashion.

Dual inhibition of FAAH and cyclooxygenase induced protection against both NSAID-induced gastrointestinal damage and intestinal inflammation.

Moreover, in intestinal inflammation direct or indirect activation of CB1 and CB2 receptors exerts also multiple beneficial effects.

Namely, activation of both CB receptors was shown to ameliorate intestinal inflammation in various murine colitis models, to decrease visceral hypersensitivity and abdominal pain, as well as to reduce colitis-associated hypermotility and diarrhea.

In addition, CB1 receptors suppress secretory processes and also modulate intestinal epithelial barrier functions. Thus, experimental data suggest that the endocannabinoid system represents a promising target in the treatment of inflammatory bowel diseases, and this assumption is also confirmed by preliminary clinical studies.”

http://www.ncbi.nlm.nih.gov/pubmed/26935536

Cannabinoids: Medical implications.

“Herbal cannabis has been used for thousands of years for medical purposes.

With elucidation of the chemical structures of tetrahydrocannabinol (THC) and cannabidiol (CBD) and with discovery of the human endocannabinoid system, the medical usefulness of cannabinoids has been more intensively explored.

While more randomized clinical trials are needed for some medical conditions, other medical disorders, like chronic cancer and neuropathic pain and certain symptoms of multiple sclerosis, have substantial evidence supporting cannabinoid efficacy.

While herbal cannabis has not met rigorous FDA standards for medical approval, specific well-characterized cannabinoids have met those standards.

Where medical cannabis is legal, patients typically see a physician who “certifies” that a benefit may result.

Physicians must consider important patient selection criteria such as failure of standard medical treatment for a debilitating medical disorder. Medical cannabis patients must be informed about potential adverse effects, such as acute impairment of memory, coordination and judgment, and possible chronic effects, such as cannabis use disorder, cognitive impairment, and chronic bronchitis.

Novel ways to manipulate the endocannbinoid system are being explored to maximize benefits of cannabinoid therapy and lessen possible harmful effects.

Key messages The medical disorders with the current best evidence that supports a benefit for cannabinoid use are the following: multiple sclerosis patient-reported symptoms of spasticity (nabiximols, nabilone, dronabinol, and oral cannabis extract), multiple sclerosis central pain or painful spasms (nabiximols, nabilone, dronabinol, and oral cannabis extract), multiple sclerosis bladder frequency (nabiximols), and chronic cancer pain/neuropathic pain (nabiximols and smoked THC).

Participating physicians should be knowledgeable about cannabinoids, closely look at the risk/benefit ratio, and consider certain important criteria in selecting a patient, such as: age, severity, and nature of the medical disorder, prior or current serious psychiatric or substance use disorder, failure of standard medical therapy as well as failure of an approved cannabinoid, serious underlying cardiac/pulmonary disease, agreement to follow-up visits, and acceptance of the detailed explanation of potential adverse risks.

The normal human endocannabinoid system is important in the understanding of such issues as normal physiology, cannabis use disorder, and the development of medications that may act as agonists or antagonists to CB1 and CB2.

By understanding the endocannabinoid system, it may be possible to enhance the beneficial effects of cannabinoid-related medication, while reducing the harmful effects.”

http://www.ncbi.nlm.nih.gov/pubmed/26912385

Study the Effect of Endocannabinoid System on Rat Behavior in Elevated Plus-Maze.

“Previous studies have shown that cannabinoidergic system is involved in anxiety.

The aim of this study is to evaluate the effect of pharmacological stimulation or blocking of CB1 receptors and inhibition of endocannabinoid degradation in anxiety like behavior in elevated plus-maze (EPM) test in rat.

It is concluded that activation of cannabinoid receptor exert anxiolytic effect while blocking of cannabinoid receptor resulted in anxiety behavior. The locomotor activity was not significantly changed by cannabinoid system.

It is suggested that potentiation of cannabinoid system may be therapeutic strategy for the anxiety behavior.”

http://www.ncbi.nlm.nih.gov/pubmed/26904171

http://www.thctotalhealthcare.com/category/anxiety-2/

Endocannabinoid system in the brain…and elsewhere.

“The endocannabinoid system is a complex system with endogenous ligands, synthesis and transport processes, specific receptors (CB1 and CB2) and intracellular degrading enzymes.

It is widely distributed in the central nervous system, but also in peripheral organs.

In the brain, endocannabinoids and CB1 receptors are almost ubiquitous and play a role in synaptic plasticity: they modulate, through an inhibitory retrograde action, the release of classical neurotransmitters such as amines, acetylcholine or amino acids.

They may exert a neuroprotective effect, but are also involved in appetite and alcohol/drug dependence.

At the periphery, they are present (and overexpressed in case of abdominal obesity) in various organs involved in energy control and metabolic regulation.

Furthermore, CB2 receptors are also present in the brain, although less numerous than CB1 receptors.

They could attenuate pain and also be neuroprotective.

Selective agonists, antagonists and inverse agonists of CB1 and CB2 receptors are currently developed and open new interesting therapeutic perspectives.”

http://www.ncbi.nlm.nih.gov/pubmed/18669206

The endocannabinoid system: novel pathway for cardiometabolic Risk-factor reduction.

“Although rimonabant has been approved for use in several countries, the Food and Drug Administration has expressed concern about the potential for adverse neurologic and psychiatric effects, considering the widespread distribution of CB1 receptors in the brain. While more research is clearly needed, the clinical evidence shows that CB1-receptor blockade with rimonabant improves multiple cardiovascular and metabolic variables, including body weight and waist circumference, HDL-C, triglycerides, and glucose metabolism. Furthermore, these effects, which are probably mediated by both peripheral and central actions in the ECS, appear to be greater than the improvements that would be expected from weight loss alone. There are multiple ongoing and planned studies with rimonabant as well as several other CB-receptor blockers (e.g., taranabant, CP-945,598). While diet and exercise are the cornerstones of cardiometabolic risk-factor reduction, improved pharmacotherapies are urgently needed. The ECS has provided us with new insights and a promising new avenue for the management of obesity and its associated cardiometabolic risk factors.”

http://www.ncbi.nlm.nih.gov/pubmed/18047036

The endocannabinoid system: potential for reducing cardiometabolic risk.

“The endocannabinoid system (ECS) affects multiple metabolic pathways in the brain and other organs. The transmembrane CB receptors were cloned in the early 1990s, followed shortly thereafter by the discovery of endogenous ligands, now known as endocannabinoids.

Three general types of cannabimimetic compounds have been described: herbal CBs, which occur uniquely in the cannabis plant (Cannabis sativa); endogenous CBs (or endocannabinoids), which are produced in the brain and peripheral tissues; and synthetic CBs, which are functionally similar compounds synthesized in the laboratory.

Obesity is associated with increased risk for insulin resistance, type 2 diabetes, nonalcoholic fatty liver disease, atherogenic dyslipidemia, and cardiovascular disease. Recent studies indicate that the body protects itself from weight loss by lowering energy expenditure. Both energy consumption and energy expenditure are regulated by hormones from a number of organs that act on the brain, as well as neural signals emanating from the brain itself.

Lifestyle modification is the initial intervention for obesity, with emphasis on reducing calorie intake and increasing physical activity; pharmacotherapy may be indicated for certain cardiovascular and metabolic risk factors.

This review focuses on the link between the biology of the cannabinoid receptor type 1 (CB1 receptor) system and body-weight regulation, as well as clinical data from studies of the first CB1 receptor antagonist…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905146/

The endocannabinoid system: a new approach to control cardiovascular disease.

“The endocannabinoid (EC) system consists of 2 types of G-protein-coupled cannabinoid receptors–cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2)–and their natural ligands.

The EC system plays a key role in the regulation of food intake and fat accumulation, as well as glucose and lipid metabolism.

When overactivated, the EC system triggers dyslipidemia, thrombotic and inflammatory states, and insulin resistance.

Blocking CB1 receptors centrally and peripherally in adipose tissue can help normalize an overactivated EC system. CB1 blockade helps regulate food intake and adipose tissue metabolism, contributing to improved insulin sensitivity and other features of the metabolic syndrome.

Visceral adipose tissue is most closely associated with the metabolic syndrome, which is a constellation of conditions that place people at high risk for coronary artery disease.

Targeting the EC system represents a new approach to treating visceral obesity and reducing cardiovascular risk factors.”