Cannabinoid CB2R receptors are upregulated with corneal injury and regulate the course of corneal wound healing.

Experimental Eye Research

“CB2R receptors have demonstrated beneficial effects in wound healing in several models. We therefore investigated a potential role of CB2R receptors in corneal wound healing. We examined the functional contribution of CB2R receptors to the course of wound closure in an in vivo murine model. We additionally examined corneal expression of CB2R receptors in mouse and the consequences of their activation on cellular signaling, migration and proliferation in cultured bovine corneal epithelial cells (CECs). Using a novel mouse model, we provide evidence that corneal injury increases CB2R receptor expression in cornea. The CB2R agonist JWH133 induces chemorepulsion in cultured bovine CECs but does not alter CEC proliferation. The signaling profile of CB2R activation is activating MAPK and increasing cAMP accumulation, the latter perhaps due to Gs-coupling. Lipidomic analysis in bovine cornea shows a rise in acylethanolamines including the endocannabinoid anandamide 1 h after injury. In vivo, CB2R deletion and pharmacological block result in a delayed course of wound closure. In summary, we find evidence that CB2R receptor promoter activity is increased by corneal injury and that these receptors are required for the normal course of wound closure, possibly via chemorepulsion.”

https://www.ncbi.nlm.nih.gov/pubmed/30905716

https://www.sciencedirect.com/science/article/pii/S0014483518307206?via%3Dihub

Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history.

“Cannabis sativa L. (C. sativa) is an annual dioecious plant, which shares its origins with the inception of the first agricultural human societies in Asia. Over the course of time different parts of the plant have been utilized for therapeutic and recreational purposes, for instance, extraction of healing oils from seed, or the use of inflorescences for their psychoactive effects. The key psychoactive constituent in C. sativa is called Δ-9-tetrahydrocannabinol (D9-THC). The endocannabinoid system seems to be phylogenetically ancient, as it was present in the most primitive vertebrates with a neuronal network. N-arachidonoylethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG) are the main endocannabinoids ligands present in the animal kingdom, and the main endocannabinoid receptors are cannabinoid type-1 (CB1) receptor and cannabinoid type-2 (CB2) receptor.

AIM OF THE STUDY:

The review aims to provide a critical and comprehensive evaluation, from the ancient times to our days, of the ethnological, botanical, chemical and pharmacological aspects of C. sativa, with a vision for promoting further pharmaceutical research to explore its complete potential as a therapeutic agent.

RESULTS AND CONCLUSIONS:

A detailed comparative analysis of the available resources for C. sativa confirmed its origin and traditional spiritual, household and therapeutic uses and most importantly its popularity as a recreational drug. The result of several studies suggested a deeper involvement of phytocannabinoids (the key compounds in C. sativa) in several others central and peripheral pathophysiological mechanisms such as food intake, inflammation, pain, colitis, sleep disorders, neurological and psychiatric illness. However, despite their numerous medicinal benefits, they are still considered as a menace to the society and banned throughout the world, except for few countries. We believe that this review will help lay the foundation for promoting exhaustive pharmacological and pharmaceutical studies in order to better understand the clinical relevance and applications of non-psychoactive cannabinoids in the prevention and treatment of life-threatening diseases and help to improve the legal status of C. sativa.” https://www.ncbi.nlm.nih.gov/pubmed/30205181 https://www.sciencedirect.com/science/article/pii/S0378874118316611?via%3Dihub]]>

Cannabidiol restores differentiation capacity of LPS exposed adipose tissue mesenchymal stromal cells.

Experimental Cell Research “Multipotent mesenchymal stromal cells (MSCs) support wound healing processes. These cells express toll-like receptors (TLRs). TLRs perform important key functions when the immune system is confronted with danger signals. TLR ligation by lipopolysaccharides (LPS) activates MSCs and induces intracellular signaling cascades, which affect their differentiation profile, increase the release of inflammatory cytokines and the production of reactive oxygen species. Continuing exposure to LPS triggers prolonged inflammatory reactions, which may lead to deleterious conditions, e.g. non-healing wounds. Cannabidiol (CBD) exerts anti-inflammatory processes through cannabinoid receptor dependent and independent mechanisms. In the present study, we examined whether CBD could influence the inflammatory MSC phenotype. Exposure to LPS increased the release of IL-6, as well as other soluble factors, and elevated levels of oxidized macromolecules found in cell homogenisates. While the amount of IL-6 was unaffected, co-treatment with CBD reduced the oxidative stress acting on the cells. LPS inhibited adipogenic as well as chondrogenic differentiation, which was attenuated by CBD treatment. In the case of adipogenesis, the disinhibitory effect probably depended on CBD interaction with the peroxisome proliferator-activated receptor-γ. CBD could exert mild immunosuppressive properties on MSCs, while it most effectively acted anti-oxidatively and by restoring the differentiation capacity upon LPS treatment.” https://www.ncbi.nlm.nih.gov/pubmed/30036540 “Cannabidiol (CBD) reduces oxidative stress and restores adipogenesis and chondrogenesis of mesenchymal stromal cells (MSCs) upon lipopolysaccharides (LPS)  exposure.” https://linkinghub.elsevier.com/retrieve/pii/S0014482718304312
]]>