Endocannabinoids and Liver Disease. I. Endocannabinoids and their receptors in the liver

  “The medicinal properties of cannabis (Cannabis sativa, marijuana) have been known for millennia, as shown by reports from China and India underscoring its analgesic, antiemetic, and appetite-stimulating properties. During the 19th century, the prescription of cannabis gained popularity for a variety of conditions ranging from epilepsy to rheumatism and abdominal symptoms. Concerns about abuse led to discontinuation of therapeutic use in the 1940s. The characterization of marijuana-derived bioactive molecules began during the early 20th century with the identification of several hydrophobic compounds and culminated in 1964 with the isolation of Δ9-tetrahydrocannabinol (THC), the main psychoactive constituent of the plant. Subsequent studies identified over 60 other phytocannabinoids and allowed the synthesis of active analogs with varying potencies. This step was critical in the identification of the endocannabinoid system, comprising specific cannabinoid binding sites (CB1 and CB2), their endogenous ligands (endocannabinoids), and synthetic and degradative pathways.”

“Cannabinoid receptors (CB1 and CB2) and their endogenous ligands (endocannabinoids) have recently emerged as novel mediators of liver diseases. Endogenous activation of CB1 receptors promotes nonalcoholic fatty liver disease (NAFLD) and progression of liver fibrosis associated with chronic liver injury; in addition, CB1 receptors contribute to the pathogenesis of portal hypertension and cirrhotic cardiomyopathy. CB2 receptor-dependent effects are also increasingly characterized, including antifibrogenic effects and regulation of liver inflammation during ischemia-reperfusion and NAFLD. It is likely that the next few years will allow us to delineate whether molecules targeting CB1 and CB2 receptors are useful therapeutic agents for the treatment of chronic liver diseases.”

http://ajpgi.physiology.org/content/294/1/G9.long

Hepatitis C Virus Induces the Cannabinoid Receptor 1

  “Chronic Hepatitis C (CHC) is one of the most common causes of hepatic fibrosis and cirrhosis with the World Health Organization (WHO) estimating that up to 3% (180 million people) of the world’s population are affected.”

 

“CB1 is up-regulated in CHC and is associated with increased steatosis in genotype 3. It is induced by the hepatitis C virus.”

“There has been much recent interest in the use of CB1 antagonists to treat both hepatic and metabolic disease and our findings emphasize the likely usefulness of these compounds in patients with hepatitis C. In addition to the amelioration of steatosis and fibrosis, CB1 blockade reduces portal pressure and can reverse mesenteric arterial dilatioN, making them useful in end stage liver disease as well.”

 

“Cannabis (Cannabis Sativa, marijuana) has been used for medicinal and ritual purposes for over 3 millennia, and remains the most commonly used recreational drug in the western world. The identification of the cannabinoid receptor 1 (CB1) in human brain some twenty years ago and the subsequent discovery of endogenous cannabinoids, has led to an understanding of the importance of the endocannabinoid system in health and disease.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2941472/

Cannabis and endocannabinoid modulators: Therapeutic promises and challenges.

   “The discovery that botanical cannabinoids such as delta-9 tetrahydrocannabinol exert some of their effect through binding specific cannabinoid receptor sites has led to the discovery of an endocannabinoid signaling system, which in turn has spurred research into the mechanisms of action and addiction potential of cannabis on the one hand, while opening the possibility of developing novel therapeutic agents on the other. This paper reviews current understanding of CB1, CB2, and other possible cannabinoid receptors, their arachidonic acid derived ligands (e.g. anandamide; 2 arachidonoyl glycerol), and their possible physiological roles. CB1 is heavily represented in the central nervous system, but is found in other tissues as well; CB2 tends to be localized to immune cells. Activation of the endocannabinoid system can result in enhanced or dampened activity in various neural circuits depending on their own state of activation. This suggests that one function of the endocannabinoid system may be to maintain steady state. The therapeutic action of botanical cannabis or of synthetic molecules that are agonists, antagonists, or which may otherwise modify endocannabinoid metabolism and activity indicates they may have promise as neuroprotectants, and may be of value in the treatment of certain types of pain, epilepsy, spasticity, eating disorders, inflammation, and possibly blood pressure control.”

“Marijuana and cannabinoids as medicine”

“Although references to potential medicinal properties of cannabis date to ancient times, and despite cannabis being included as a medication in Western pharmacopeias from the nineteenth through the early twentieth centuries, there is still no body of reliable information on possible indications or efficacy. In part, slow progress can be attributed to difficulties in identifying the active ingredients in cannabis; THC was not actually characterized and identified as the main psychoactive substance until 1965. The chemical properties of the cannabinoids, for example their virtual insolubility in water, and the fact that they consist of oily liquids at room temperature has posed further challenges in formulation and administration. Increased governmental concerns about the abuse potential of marijuana and hashish also created a regulatory climate in many Western countries that emphasized the negative properties of these substances and absence of any documented medicinal properties, thus discouraging research into therapeutics.”

“Cultural and attitude changes in the latter half of the twentieth century in many Western countries resulted in large groups of ‘mainstream’ adults and adolescents experimenting with marijuana. The scarcity of obvious acute serious toxic effects, and lack of consistent information on longer-term adverse effects has lead to more recent attitudinal changes in many Western societies that have re-opened the possibility of use of cannabis as a medication.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2544377/

The endocannabinoid-CB receptor system: Importance for development and in pediatric disease.

Abstract

“Endogenous cannabinoids (endocannabinoids) and their cannabinoid CB1 and CB2 receptors, are present from the early stages of gestation and play a number of vital roles for the developing organism. Although most of these data are collected from animal studies, a role for cannabinoid receptors in the developing human brain has been suggested, based on the detection of “atypically” distributed CB1 receptors in several neural pathways of the fetal brain. In addition, a role for the endocannabinoid system for the human infant is likely, since the endocannabinoid 2-arachidonoyl glycerol has been detected in human milk. Animal research indicates that the Endocannabinoid-CB1 Receptor (‘ECBR’) system fulfills a number of roles in the developing organism: 1. embryonal implantation (requires a temporary and localized reduction in anandamide); 2. in neural development (by the transient presence of CB1 receptors in white matter areas of the nervous system); 3. as a neuroprotectant (anandamide protects the developing brain from trauma-induced neuronal loss); 4. in the initiation of suckling in the newborn (where activation of the CB1 receptors in the neonatal brain is critical for survival). 5. In addition, subtle but definite deficiencies have been described in memory, motor and addictive behaviors and in higher cognitive (‘executive’) function in the human offspring as result of prenatal exposure to marihuana. Therefore, the endocanabinoid-CB1 receptor system may play a role in the development of structures which control these functions, including the nigrostriatal pathway and the prefrontal cortex. From the multitude of roles of the endocannabinoids and their receptors in the developing organism, there are two distinct stages of development, during which proper functioning of the endocannabinoid system seems to be critical for survival: embryonal implantation and neonatal milk sucking. We propose that a dysfunctional Endocannabinoid-CB1 Receptor system in infants with growth failure resulting from an inability to ingest food, may resolve the enigma of “non-organic failure-to-thrive” (NOFTT). Developmental observations suggest further that CB1 receptors develop only gradually during the postnatal period, which correlates with an insensitivity to the psychoactive effects of cannabinoid treatment in the young organism. Therefore, it is suggested that children may respond positively to medicinal applications of cannabinoids without undesirable central effects. Excellent clinical results have previously been reported in pediatric oncology and in case studies of children with severe neurological disease or brain trauma. We suggest cannabinoid treatment for children or young adults with cystic fibrosis in order to achieve an improvement of their health condition including improved food intake and reduced inflammatory exacerbations.”

http://www.ncbi.nlm.nih.gov/pubmed/15159678

Medicinal cannabis: is delta9-tetrahydrocannabinol necessary for all its effects?

Abstract

  “Cannabis is under clinical investigation to assess its potential for medicinal use, but the question arises as to whether there is any advantage in using cannabis extracts compared with isolated Delta9-trans-tetrahydrocannabinol (Delta9THC), the major psychoactive component. We have compared the effect of a standardized cannabis extract (SCE) with pure Delta9THC, at matched concentrations of Delta9THC, and also with a Delta9THC-free extract (Delta9THC-free SCE), using two cannabinoid-sensitive models, a mouse model of multiple sclerosis (MS), and an in-vitro rat brain slice model of epilepsy. Whilst SCE inhibited spasticity in the mouse model of MS to a comparable level, it caused a more rapid onset of muscle relaxation, and a reduction in the time to maximum effect compared with Delta9THC alone. The Delta9THC-free extract or cannabidiol (CBD) caused no inhibition of spasticity. However, in the in-vitro epilepsy model, in which sustained epileptiform seizures were induced by the muscarinic receptor agonist oxotremorine-M in immature rat piriform cortical brain slices, SCE was a more potent and again more rapidly-acting anticonvulsant than isolated Delta9THC, but in this model, the Delta9THC-free extract also exhibited anticonvulsant activity. Cannabidiol did not inhibit seizures, nor did it modulate the activity of Delta9THC in this model. Therefore, as far as some actions of cannabis were concerned (e.g. antispasticity), Delta9THC was the active constituent, which might be modified by the presence of other components. However, for other effects (e.g. anticonvulsant properties) Delta9THC, although active, might not be necessary for the observed effect. Above all, these results demonstrated that not all of the therapeutic actions of cannabis herb might be due to the Delta9THC content.”

http://www.ncbi.nlm.nih.gov/pubmed/14738597

Cannabis drug ‘fights pain without high’

   “Scientists have developed a cannabis-based medicine which relieves chronic pain without any of the “high” normally associated with the drug.

They believe the discovery could pave the way for cannabis-based medication to become available by prescription within two years.

Much of the controversy surrounding the medicinal use of cannabis has centred on fears that it would be used solely for its mood-altering effects.

However, scientists at the University of Massachusetts in the United States say their discovery should help authorities to overcome these fears.

Dr Sumner Burstein and colleagues say early trials of the medication in animals and healthy patients have been promising.

The medication, called ajulemic acid or CT3, has been manufactured in laboratories.

It maximises the medicinal effects of tertrahydrocannabinol – the key ingredient of cannabis – without any of the mind-altering effects.

‘More effective’

In animal tests, this compound was found to be between 10 to 50 times more effective at reducing pain than tetrahydrocannabinol.

Those tests showed that ajulemic acid was very effective at preventing the joint damage associated with arthritis and relieving the muscle stiffness associated with multiple sclerosis.”

Read more: http://news.bbc.co.uk/2/hi/health/2207478.stm

Ajulemic acid: A novel cannabinoid produces analgesia without a “high”.

Abstract

   “A long-standing goal in cannabinoid research has been the discovery of potent synthetic analogs of the natural substances that might be developed as clinically useful drugs. This requires, among other things, that they be free of the psychotropic effects that characterize the recreational use of Cannabis. An important driving force for this goal is the long history of the use of Cannabis as a medicinal agent especially in the treatment of pain and inflammation. While few compounds appear to have these properties, ajulemic acid (AJA), also known as CT-3 and IP-751, is a potential candidate that could achieve this goal. Its chemical structure was derived from that of the major metabolite of Delta9-THC, the principal psychotropic constituent of Cannabis. In preclinical studies it displayed many of the properties of non-steroidal anti-inflammatory drugs (NSAIDs); however, it seems to be free of undesirable side effects. The initial short-term trials in healthy human subjects, as well as in patients with chronic neuropathic pain, demonstrated a complete absence of psychotropic actions. Moreover, it proved to be more effective than placebo in reducing this type of pain as measured by the visual analog scale. Unlike the narcotic analgesics, signs of dependency were not observed after withdrawal of the drug at the end of the one-week treatment period. Data on its mechanism of action are not yet complete; however, the activation of PPAR-gamma, and regulation of eicosanoid and cytokine production, appear to be important for its potential therapeutic effects.”

http://www.ncbi.nlm.nih.gov/pubmed/15240185

Prospects for cannabinoids as anti-inflammatory agents.

Abstract

“The marijuana plant (Cannabis sativa) and preparations derived from it have been used for medicinal purposes for thousands of years. It is likely that the therapeutic benefits of smoked marijuana are due to some combination of its more than 60 cannabinoids and 200-250 non-cannabinoid constituents. Several marijuana constituents, the carboxylic acid metabolites of tetrahydrocannabinol, and synthetic analogs are free of cannabimimetic central nervous system activity, do not produce behavioral changes in humans, and are effective antiinflammatory and analgesic agents. One cannabinoid acid in particular, ajulemic acid, has been studied extensively in in vitro systems and animal models of inflammation and immune responses. This commentary reviews a portion of the work done by investigators interested in separating the medicinal properties of marijuana from its psychoactive effects. Understanding the mechanisms of the therapeutic effects of nonpsychoactive cannabinoids should lead to development of safe effective treatment for several diseases, and may render moot the debate about “medical marijuana”.”

Medicinal use of cannabis: history and current status.

Abstract

“OBJECTIVE:

To provide an overview of the history and pharmacology of cannabis in relation to current scientific knowledge concerning actual and potential therapeutic uses of cannabis preparations and pure cannabinoids.

METHODS:

The literature on therapeutic uses of cannabis and cannabinoids was assessed with respect to type of study design, quality and variability of data, independent replications by the same or other investigators, magnitude of effects, comparison with other available treatments and reported adverse effects. The results of this review were also compared with those of major international reviews of this topic in the past five years.

CONCLUSIONS:

Pure tetrahydrocannabinol and several analogues have shown significant therapeutic benefits in the relief of nausea and vomiting, and stimulation of appetite in patients with wasting syndrome. Recent evidence clearly demonstrates analgesic and anti-spasticity effects that will probably prove to be clinically useful. Reduction of intraocular pressure in glaucoma and bronchodilation in asthma are not sufficiently strong, long lasting or reliable to provide a valid basis for therapeutic use. The anticonvulsant effect of cannabidiol is sufficiently promising to warrant further properly designed clinical trials. There is still a major lack of long term pharmacokinetic data and information on drug interactions. For all the present and probable future uses, pure cannabinoids, administered orally, rectally or parenterally, have been shown to be effective, and they are free of the risks of chronic inflammatory disease of the airways and upper respiratory cancer that are associated with the smoking of crude cannabis. Smoking might be justified on compassionate grounds in terminally ill patients who are already accustomed to using cannabis in this manner. Future research will probably yield new synthetic analogues with better separation of therapeutic effects from undesired psychoactivity and other side effects, and with solubility properties that may permit topical administration in the eye, or aerosol inhalation for rapid systemic effect without the risks associated with smoke inhalation.”

http://www.ncbi.nlm.nih.gov/pubmed/11854770

[Potential therapeutic usefulness of cannabis and cannabinoids].

Abstract

“Diseases in which Cannabis and cannabinoids have demonstrated some medicinal putative properties are: nausea and vomiting associated with cancer chemotherapy, muscle spasticity (multiple sclerosis, movement disorders), pain, anorexia, epilepsy, glaucoma, bronchial asthma, neuroegenerative diseases, cancer, etc. Although some of the current data comes from clinical controlled essays, the majority are based on anecdotic reports. Basic pharmacokinetic and pharmacodynamic studies and more extensive controlled clinical essays with higher number of patients and long term studies are necessary to consider these compounds useful since a therapeutical point of view.”

http://www.ncbi.nlm.nih.gov/pubmed/11205042