Neuroprotective agents: cannabinoids.

Abstract

“Chronic inflammation and neurodegeneration are the main pathological traits of multiple sclerosis that coexist in all stages of the disease course, with complex and still nonclarified relationships. Currently licensed medications have efficacy to control aspects related to inflammation, but have been unable to modify pure progression. Experimental work has provided robust evidence of the immunomodulatory and neuroprotective properties that cannabinoids exert in animal models of multiple sclerosis. Through activation of the CB2 receptor, cannabinoids modulate peripheral blood lymphocytes, interfere with migration across the blood-brain barrier and control microglial/macrophage activation. CB1 receptors present in neural cells have a fundamental role in direct neuroprotection against several insults, mainly excitotoxicity. In multiple sclerosis, several reports have documented the disturbance of the endocannabinoid system. Considering the actions demonstrated experimentally, cannabinoids might be promising agents to target the main aspects of the human disease.”

http://www.ncbi.nlm.nih.gov/pubmed/21420365

The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic-ischemic brain damage in mice is mediated by CB(2) and adenosine receptors.

Abstract

“To investigate the mechanisms involved in cannabidiol (CBD)-induced neuroprotection in hypoxic-ischemic (HI) immature brain, forebrain slices from newborn mice underwent oxygen and glucose deprivation in the presence of vehicle, or CBD alone or with selective antagonists of cannabinoid CB(1) and CB(2), and adenosine A(1) and A(2) receptors. CBD reduced acute (LDH efflux to the incubation medium) and apoptotic (caspase-9 concentration in tissue) HI brain damage by reducing glutamate and IL-6 concentration, and TNFalpha, COX-2, and iNOS expression. CBD effects were reversed by the CB(2) antagonist AM630 and by the A(2A) antagonist SCH58261. The A(1A) antagonist DPCPX only counteracted the CBD reduction of glutamate release, while the CB(1) antagonist SR141716 did not modify any effect of CBD. In conclusion, CBD induces robust neuroprotection in immature brain, by acting on some of the major mechanisms underlying HI cell death; these effects are mediated by CB(2) and adenosine, mainly A(2A), receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/19900555

Neuroprotection by Δ9-Tetrahydrocannabinol, the Main Active Compound in Marijuana, against Ouabain-Induced In Vivo Excitotoxicity

“These results provide evidence that the cannabinoid system can serve to protect the brain against neurodegeneration.”

“In summary, we have shown that in an in vivo model of neurodegeneration Δ9-THC reduces neuronal damage via a CB1-receptor-mediated mechanism. This holds in both the acute and late phase after induction of excitotoxicity. Δ9-THC inhibits astrogliosis via a non-CB1-receptor-controlled mechanism. The results strengthen the concept that the endogenous cannabinoid system may serve to establish a defense system for the brain. This system may be functional in several neurodegenerative diseases in which excitotoxicity is thought to play a role, such as amyotrophic lateral sclerosis, Huntington’s and Parkinson’s diseases, and also in acute neuronal damage as found in stroke and traumatic brain injury. It is conceivable that the endogenous cannabinoid system can be exploited for therapeutic interventions in these types of primarily incurable diseases.”

http://www.jneurosci.org/content/21/17/6475.long

The seek of neuroprotection: introducing cannabinoids.

Abstract

“The cannabinoid system is constituted by some endogenous ligands (endocannabinoids), usually arachydonic acid derivatives, and their specific receptors. The endogenous cannabinoid system (ECS) is involved in the control of synaptic transmission, modulating memory, motivation, movement, nociception, appetite and thermoregulation. ECS also exert extraneural effects, mainly immunomodulation and vasodilation. Two cannabinoid receptors have been cloned so far: CB(1) receptors are expressed in the central nervous system (CNS) but can also be found in glial cells and in peripheral tissues; CB(1) receptors are Gi/o protein coupled receptors that modulate the activity of several plasma membrane proteins and intracellular signaling pathways. CB(2) receptors are also Gi/o protein-coupled receptors; although it is accepted that CB(2) receptors are not expressed in forebrain neurons, they have been described in activated glia. Some of the cannabinoids activate other receptors, for instance vanilloid receptors (TRPV1). Lately, the ECS is emerging as a natural system of neuroprotection. This consideration is based on some properties of cannabinoids as their vasodilatory effect, the inhibition of the release of excitotoxic amino acids and cytokines, and the modulation of oxidative stress and toxic production of nitric oxide. Such effects have been demonstrated in adult and newborn animal models of acute and chronic neurodegenerative conditions, and postulate cannabinoids as valuable neuroprotective agents. Patents related to cannabinoid receptors are also discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/18221224

The therapeutic potential of the cannabinoids in neuroprotection.

Abstract

“After thousands of years of interest the last few decades have seen a huge increase in our knowledge of the cannabinoids and their mode of action. Their potential as medical therapeutics has long been known. However, very real concerns over their safety and efficacy have lead to caution and suspicion when applying the legislature of modern medicine to these compounds. The ability of this diverse family of compounds to modulate neurotransmission and act as anti-inflammatory and antioxidative agents has prompted researchers to investigate their potential as neuroprotective agents. Indeed, various cannabinoids rescue dying neurones in experimental forms of acute neuronal injury, such as cerebral ischaemia and traumatic brain injury. Cannabinoids also provide symptomatic relief in experimental models of chronic neurodegenerative diseases, such as multiple sclerosis and Huntington’s disease. This preclinical evidence has provided the impetus for the launch of a number of clinical trials in various conditions of neurodegeneration and neuronal injury using compounds derived from the cannabis plant. Our understanding of cannabinoid neurobiology, however, must improve if we are to effectively exploit this system and take advantage of the numerous characteristics that make this group of compounds potential neuroprotective agents.”

http://www.ncbi.nlm.nih.gov/pubmed/12387700

Sativex-like Combination of Phytocannabinoids is Neuroprotective in Malonate-Lesioned Rats, an Inflammatory Model of Huntington’s Disease: Role of CB(1) and CB(2) Receptors.

Abstract

“We have investigated whether a 1:1 combination of botanical extracts enriched in either Δ(9)-tetrahydrocannabinol (Δ(9)-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex, is neuroprotective in Huntington’s disease (HD), using an experimental model of this disease generated by unilateral lesions of the striatum with the mitochondrial complex II inhibitor malonate. This toxin damages striatal neurons by mechanisms that primarily involve apoptosis and microglial activation. We monitored the extent of this damage and the possible preservation of the striatal parenchyma by treatment with a Sativex-like combination of phytocannabinoids using different histological and biochemical markers. Results were as follows: (i) malonate increased the volume of edema measured by in vivo NMR imaging and the Sativex-like combination of phytocannabinoids partially reduced this increase; (ii) malonate reduced the number of Nissl-stained cells, while enhancing the number of degenerating cells stained with FluoroJade-B, and the Sativex-like combination of phytocannabinoids reversed both effects; (iii) malonate caused a strong glial activation (i.e., reactive microglia labeled with Iba-1, and astrogliosis labeled with GFAP) and the Sativex-like combination of phytocannabinoids attenuated both responses; and (iv) malonate increased the expression of inducible nitric oxide synthase and the neurotrophin IGF-1, and both responses were attenuated after the treatment with the Sativex-like combination of phytocannabinoids. We also wanted to establish whether targets within the endocannabinoid system (i.e., CB(1) and CB(2) receptors) are involved in the beneficial effects induced in this model by the Sativex-like combination of phytocannabinoids. This we did using selective antagonists for both receptor types (i.e., SR141716 and AM630) combined with the Sativex-like phytocannabinoid combination. Our results indicated that the effects of this combination are blocked by these antagonists and hence that they do result from an activation of both CB(1) and CB(2) receptors. In summary, this study provides preclinical evidence in support of a beneficial effect of the cannabis-based medicine Sativex as a neuroprotective agent capable of delaying signs of disease progression in a proinflammatory model of HD, which adds to previous data obtained in models priming oxidative mechanisms of striatal injury. However, the interest here is that, in contrast with these previous data, we have now obtained evidence that both CB(1) and CB(2) receptors appear to be involved in the effects produced by a Sativex-like phytocannabinoid combination, thus stressing the broad-spectrum properties of Sativex that may combine activity at the CB(1) and/or CB(2) receptors with cannabinoid receptor-independent actions.”

http://www.ncbi.nlm.nih.gov/pubmed/22860209

Neuroprotective effects of phytocannabinoid-based medicines in experimental models of Huntington’s disease.

Abstract

“We studied whether combinations of botanical extracts enriched in either Δ(9)-tetrahydrocannabinol (Δ(9)-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex, provide neuroprotection in rat models of Huntington’s disease (HD). We used rats intoxicated with 3-nitropropionate (3NP) that were given combinations of Δ(9)-THC- and CBD-enriched botanical extracts. The issue was also studied in malonate-lesioned rats. The administration of Δ(9)-THC- and CBD-enriched botanical extracts combined in a ratio of 1:1 as in Sativex attenuated 3NP-induced GABA deficiency, loss of Nissl-stained neurons, down-regulation of CB(1) receptor and IGF-1 expression, and up-regulation of calpain expression, whereas it completely reversed the reduction in superoxide dismutase-1 expression. Similar responses were generally found with other combinations of Δ(9)-THC- and CBD-enriched botanical extracts, suggesting that these effects are probably related to the antioxidant and CB(1) and CB(2) receptor-independent properties of both phytocannabinoids. In fact, selective antagonists for both receptor types, i.e., SR141716 and AM630, respectively, were unable to prevent the positive effects on calpain expression caused in 3NP-intoxicated rats by the 1:1 combination of Δ(9)-THC and CBD. Finally, this combination also reversed the up-regulation of proinflammatory markers such as inducible nitric oxide synthase observed in malonate-lesioned rats. In conclusion, this study provides preclinical evidence in support of a beneficial effect of the cannabis-based medicine Sativex as a neuroprotective agent capable of delaying disease progression in HD, a disorder that is currently poorly managed in the clinic, prompting an urgent need for clinical trials with agents showing positive results in preclinical studies.”

http://www.ncbi.nlm.nih.gov/pubmed/21674569

Neuroprotective antioxidants from marijuana.

“Cannabidiol and other cannabinoids were examined as neuroprotectants in rat cortical neuron cultures exposed to toxic levels of the neurotransmitter, glutamate.

The psychotropic cannabinoid receptor agonist delta 9-tetrahydrocannabinol (THC) and cannabidiol, (a non-psychoactive constituent of marijuana), both reduced NMDA, AMPA and kainate receptor mediated neurotoxicities.

Neuroprotection was not affected by cannabinoid receptor antagonist, indicating a (cannabinoid) receptor-independent mechanism of action. Glutamate toxicity can be reduced by antioxidants. Using cyclic voltametry and a fenton reaction based system,

it was demonstrated that Cannabidiol, THC and other cannabinoids are potent antioxidants. As evidence that cannabinoids can act as an antioxidants in neuronal cultures,

 cannabidiol was demonstrated to reduce hydroperoxide toxicity in neurons.

In a head to head trial of the abilities of various antioxidants to prevent glutamate toxicity, cannabidiol was superior to both alpha-tocopherol and ascorbate in protective capacity.

Recent preliminary studies in a rat model of focal cerebral ischemia suggest that cannabidiol may be at least as effective in vivo as seen in these in vitro studies.”

http://www.ncbi.nlm.nih.gov/pubmed/10863546

Cannabidiol Displays Antiepileptiform and Antiseizure Properties In Vitro and In Vivo

“CBD is the major nonpsychoactive component of Cannabis sativa whose structure was first described by Mechoulam and Shvo (1963); CBD has recently attracted renewed interest for its therapeutic potential in a number of disease states. CBD has been proposed to possess anticonvulsive, neuroprotective, and anti-inflammatory properties in humans.”

 “Plant-derived cannabinoids (phytocannabinoids) are compounds with emerging therapeutic potential. Early studies suggested that cannabidiol (CBD) has anticonvulsant properties in animal models and reduced seizure frequency in limited human trials. Here, we examine the antiepileptiform and antiseizure potential of CBD using in vitro electrophysiology and an in vivo animal seizure model…. These findings suggest that CBD acts, potentially in a CB1 receptor-independent manner, to inhibit epileptiform activity in vitro and seizure severity in vivo. Thus, we demonstrate the potential of CBD as a novel antiepileptic drug in the unmet clinical need associated with generalized seizures.”

“In conclusion, our data in separate in vitro models of epileptiform activity and, in particular, the beneficial reductions in seizure severity caused by CBD in an in vivo animal model of generalized seizures suggests that earlier, small-scale clinical trials for CBD in untreated epilepsy warrant urgent renewed investigation.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819831/

Endocannabinoids and Their Implications for Epilepsy

“This review covers the main features of a newly discovered intercellular signaling system in which endogenous ligands of the brain’s cannabinoid receptors, or endocannabinoids, serve as retrograde messengers that enable a cell to control the strength of its own synaptic inputs. Endocannabinoids are released by bursts of action potentials, including events resembling interictal spikes, and probably by seizures as well. Activation of cannabinoid receptors has been implicated in neuroprotection against excitotoxicity and can help explain the anticonvulsant properties of cannabinoids that have been known since antiquity.”

“Cannabis in its various forms, including marijuana and hashish, is produced from the flowers and leaves of the hemp plant, Cannabis sativa. Through their primary psychoactive ingredient, Δ9-tetrahydrocannabinol (THC), these drugs affect the central nervous system by activating specific membrane-bound receptors. The primary brain receptors, cannabinoid receptors type 1 (CB1), are G protein–coupled, seven-transmembrane domain proteins that share numerous similarities with heterotrimeric G protein–coupled receptors for conventional neurotransmitters such as γ-aminobutyric acid (GABA) and glutamate. The CB1s bind THC with a high degree of selectivity and are heterogeneously distributed throughout the brain. Inasmuch as THC is a plant-derived compound not produced in mammals, endogenous ligands must exist for the cannabinoid receptor, that is, endocannabinoids. Indeed, several endogenous ligands for CB1 have been discovered, with anandamide being the first. Anandamide and 2-arachidonoyl glycerol (2-AG), are thought to be the major brain endocannabinoids, with regional differences in which one or the other predominates. Endocannabinoids have been strongly implicated in a growing variety of physiologic phenomena, including regulation of eating, anxiety, pain, extinction of aversive memories, and neuroprotection. Potent agonists and antagonists for CB1 exist and may serve as the foundation of new therapeutic strategies for treating pathologies. The voluminous work summarized here has been extensively covered in recent reviews on cannabinoid neurochemistry and pharmacology as well as neurophysiology. This review focuses on the neurophysiology of the endocannabinoid systems.”

“Conclusion

From what is known about their synthesis and release, endocannabinoids should be produced under many conditions of increased neuronal excitability and specific intercellular signaling. For example, an epileptic seizure, with its large swings in transmembrane voltage, increases in intracellular calcium, and marked release of neurotransmitters, such as acetylcholine and glutamate, should prominently release endocannabinoids. Indeed, seizures induced by kainic acid (a glutamate agonist) increase hippocampal levels of anandamide in normal and wild-type mice. Intriguingly, CB1 knockout mice and normal mice treated with a CB1 antagonist had more pronounced seizures and more severe excitotoxic cell death than untreated normal mice. Although the detailed mechanisms of neuroprotection have not been worked out, the rapid increases in expression of the immediate early genes, c-fos and zipf268, and subsequent increase in brain-derived neurotrophic factor (BDNF) normally induced by kainic acid, were absent in the CB1 knockout mice. The results complement previous evidence that exogenous cannabinoids can be neuroprotective and show that CB1 activation by seizure-induced release of endocannabinoids also is normally neuroprotective.”

“The important new directions being opened by investigations of endocannabinoids underscore the prescient opinion of Robert Christison, who, in 1848, noting its various beneficial effects, argued that cannabis “is a remedy which deserves a more extensive inquiry…””

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1176361/