Cannabinoids, inflammation, and fibrosis.

Image result for FASEB J.

“Cannabinoids apparently act on inflammation through mechanisms different from those of agents such as nonsteroidal anti-inflammatory drugs (NSAIDs).

As a class, the cannabinoids are generally free from the adverse effects associated with NSAIDs. Their clinical development thus provides a new approach to treatment of diseases characterized by acute and chronic inflammation and fibrosis.

A concise survey of the anti-inflammatory actions of the phytocannabinoids Δ9-tetrahydrocannabinol (THC), cannabidiol, cannabichromene, and cannabinol is presented.

The endogenous cannabinoids, including the closely related lipoamino acids, are then discussed.

The review concludes with a presentation of a possible mechanism for the anti-inflammatory and antifibrotic actions of these substances.

Thus, several cannabinoids may be considered candidates for development as anti-inflammatory and antifibrotic agents.

Of special interest is their possible use for treatment of chronic inflammation, a major unmet medical need.”

https://www.ncbi.nlm.nih.gov/pubmed/27435265

Role of cannabis in digestive disorders.

Image result for European Journal of Gastroenterology & Hepatology

“Cannabis sativa, a subspecies of the Cannabis plant, contains aromatic hydrocarbon compounds called cannabinoids.

Tetrahydrocannabinol is the most abundant cannabinoid and is the main psychotropic constituent.

Cannabinoids activate two types of G-protein-coupled cannabinoid receptors: cannabinoid type 1 receptor and cannabinoid type 2 receptor.

There has been ongoing interest and development in research to explore the therapeutic potential of cannabis. Tetrahydrocannabinol exerts biological functions on the gastrointestinal (GI) tract.

Cannabis has been used for the treatment of GI disorders such as abdominal pain and diarrhea.

The endocannabinoid system (i.e. endogenous circulating cannabinoids) performs protective activities in the GI tract and presents a promising therapeutic target against various GI conditions such as inflammatory bowel disease (especially Crohn’s disease), irritable bowel syndrome, and secretion and motility-related disorders.

The present review sheds light on the role of cannabis in the gut, liver, and pancreas and also on other GI symptoms, such as nausea and vomiting, cannabinoid hyperemesis syndrome, anorexia, weight loss, and chronic abdominal pain.

Although the current literature supports the use of marijuana for the treatment of digestive disorders, the clinical efficacy of cannabis and its constituents for various GI disorders remains unclear.”

https://www.ncbi.nlm.nih.gov/pubmed/27792038

Preclinical and Clinical Assessment of Cannabinoids as Anti-Cancer Agents.

Image result for Front Pharmacol.

“Cancer is the second leading cause of death in the United States with 1.7 million new cases estimated to be diagnosed in 2016. This disease remains a formidable clinical challenge and represents a substantial financial burden to the US health care system. Therefore, research and development of novel therapeutics for the treatment of cancer is of high priority.

Cannabinoids and their derivatives have been utilized for their medicinal and therapeutic properties throughout history.

Cannabinoid activity is regulated by the endocannabinoid system (ECS), which is comprised of cannabinoid receptors, transporters, and enzymes involved in cannabinoid synthesis and breakdown.

More recently, cannabinoids have gained special attention for their role in cancer cell proliferation and death. However, many studies investigated these effects using in vitro models which may not adequately mimic tumor growth and metastasis.

As such, this article aims to review study results which evaluated effects of cannabinoids from plant, synthetic and endogenous origins on cancer development in preclinical animal models and to examine the current standing of cannabinoids that are being tested in human cancer patients.” https://www.ncbi.nlm.nih.gov/pubmed/27774065

“The studies reviewed herein indicate that cannabinoids elicit activity through cannabinoid receptor dependent and independent pathways. The evidence generated in these human studies are still informative and, when taken together with the strong in vivo animal data demonstrating anti-tumor effects of cannabinoids, offer promise for a clinical role for cannabinoids in the eradication of tumors. Hence, these investigations shed light on the role of cannabinoids on tumor growth in vivo and may ultimately pave the way for the development of novel cannabinoid therapeutics for cancer treatment.”  http://journal.frontiersin.org/article/10.3389/fphar.2016.00361/full

Experimental cannabidiol treatment reduces early pancreatic inflammation in type 1 diabetes.

Image result for Clinical Hemorheology and Microcirculation

“Destruction of the insulin-producing beta cells in type 1 diabetes (T1D) is induced by invasion of immune cells causing pancreatic inflammation.

Cannabidiol (CBD), a phytocannabinoid, derived from the plant, Cannabis sativa, was shown to lower the incidence of diabetes in non-obese diabetic (NOD) mice, an animal model of spontaneous T1D development.

The goal of this study was to investigate the impact of experimental CBD treatment on early pancreatic inflammation in T1D by intravital microscopy (IVM) in NOD mice.

CBD-treated NOD mice developed T1D later and showed significantly reduced leukocyte activation and increased FCD in the pancreatic microcirculation.

Experimental CBD treatment reduced markers of inflammation in the microcirculation of the pancreas studied by intravital microscopy.”

https://www.ncbi.nlm.nih.gov/pubmed/27767974

A New Study Suggests Cannabis Could Treat Cervical Cancer

Image result for motherboard logo

“A new study suggests that cannabis might be useful in treating cervical cancer.

Through in vitro, or test tube/petri dish, analysis, researchers from the biochemistry department at North-West University in Potchefstroom, South Africa found that the non-psychotropic cannabinoid, or chemical compound, CBD (cannabidiol), taken from a Cannabis sativa extract, could hold anticarcinogenic properties. They pointed out that cannabis acted on the cancerous cells through apoptosis, or a process of cell death, causing only the cancerous cells to kill themselves, and inhibiting their growth.

Cervical cancer is no longer a leading cause of death as much as it used to be in the United States, thanks in large part to the widespread use of pap smears, but it’s still a widespread threat. And in Sub-Saharan Africa, it kills 250,000 women every year. “This makes it the most lethal cancer amongst black women and calls for urgent therapeutic strategies,” the study’s authors wrote in the BMC Complementary and Alternative Medicine journal. “In this study we compare the anti-proliferative effects of crude extract of Cannabis sativa and its main compound cannabidiol on different cervical cancer cell lines.”

It will take much more research before cannabis can be integrated into official cervical cancer treatments in sub-Saharan Africa. But earlier studies also shows that cannabis has been useful in treating not only the symptoms of cancer and chemotherapy, but also the cancer itself.

One study from the journal of Current Clinical Pharmacology found that cannabis served as a preventative agent, reducing inflammation, which researchers also said was useful in reducing the likelihood of cancer. Another study from Oncology Hematology also noted cannabis’ anti-cancer effects, explaining how the plant’s cannabinoids inhibited tumor growth in vitro, such as in a petri dish or test tube, and in vivo, or a living organism.

A handful of other studies have also looked into cannabis as a treatment specifically for cervical cancer. Another from the University Hospital in Geneva, Switzerland, found that the cannabinoids, including the body’s own endocannabinoids, offered “attractive opportunities for the development of novel potent anticancer drugs.”

With that said, often medical marijuana is ingested via capsules, tinctures, vaporizable oils, and other non-smokeable, more pharmaceutical-style forms. Should cannabis eventually become approved for cervical cancer treatment in Africa, it may be up for debate whether whole plant therapy (in which all the cannabinoids work synergistically through the “entourage effect”) or specific cannabinoid therapy is best.”

http://motherboard.vice.com/read/a-new-study-suggests-cannabis-could-treat-cervical-cancer

Cannabis: A Treasure Trove or Pandora’s Box?

 

Image result for Mini Reviews in Medicinal Chemistry

“Cannabis is one of the earliest cultivated plants.

Cannabis of industrial utility and culinary value is generally termed as hemp.

Conversely, cannabis that is bred for medical, spiritual and recreational purposes is called marijuana.

The female marijuana plant produces a significant quantity of bio- and psychoactive phytocannabinoids, which regained the spotlight with the discovery of the endocannabinoid system of the animals in the early 90’s.

Nevertheless, marijuana is surrounded by controversies, debates and misconceptions related to its taxonomic classification, forensic identification, medical potential, legalization and its long-term health consequences.

In the first part, we provide an in-depth review of the botany and taxonomy of Cannabis. We then overview the biosynthesis of phytocannabinoids within the glandular trichomes with emphasis on the role of peculiar plastids in the production of the secreted material. We also compile the analytical methods used to determine the phytocannabinoid composition of glandular trichomes.

In the second part, we revisit the psychobiology and molecular medicine of marijuana. We summarize our current knowledge on the recreational use of cannabis with respect to the modes of consumption, short-term effects, chronic health consequences and cannabis use disorder.

Next, we overview the molecular targets of a dozen major and minor bioactive cannabinoids in the body. This helps us introduce the endocannabinoid system in an unprecedented detail: its up-to-date molecular biology, pharmacology, physiology and medical significance, and beyond.

In conclusion, we offer an unbiased survey about cannabis to help better weigh its medical value versus the associated risks.”

https://www.ncbi.nlm.nih.gov/pubmed/27719666

Medical Marijuana: Just the Beginning of a Long, Strange Trip?

Physical Therapy Journal

“Medical marijuana continues to gain acceptance and become legalized in many states. Various species of the marijuana plant have been cultivated, and this plant can contain up to 100 active compounds known as cannabinoids.

Two cannabinoids seem the most clinically relevant: Δ9-tetrahydrocannabinol (THC), which tends to produce the psychotropic effects commonly associated with marijuana, and cannabidiol (CBD), which may produce therapeutic effects without appreciable psychoactive properties.

Smoking marijuana, or ingesting extracts from the whole plant orally (in baked goods, teas, and so forth), introduces variable amounts of THC, CBD, and other minor cannabinoids into the systemic circulation where they ultimately reach the central and peripheral nervous systems.

Alternatively, products containing THC, CBD, or a combination of both compounds, can also be ingested as oral tablets, or via sprays applied to the oral mucosal membranes. These products may provide a more predictable method for delivering a known amount of specific cannabinoids into the body.

Although there is still a need for randomized controlled clinical trials, preliminary studies have suggested that medical marijuana and related cannabinoids may be beneficial in treating chronic pain, inflammation, spasticity, and other conditions seen commonly in physical therapist practice.

Physical therapists should therefore be aware of the options that are available for patients considering medical marijuana, and be ready to provide information for these patients.”

http://www.ncbi.nlm.nih.gov/pubmed/27660328

From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology.

Image result for Physiol Rev.

“Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS).

This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs.

In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.”

http://www.ncbi.nlm.nih.gov/pubmed/27630175

Peltatoside Isolated from Annona crassiflora Induces Peripheral Antinociception by Activation of the Cannabinoid System.

Image result for Planta Med

“Peltatoside is a natural compound isolated from leaves of Annona crassiflora Mart., a plant widely used in folk medicine.

This substance is an analogue of quercetin, a flavonoid extensively studied because of its diverse biological activities, including analgesic effects. Besides, a previous study suggested, by computer structure analyses, a possible quercetin-CB1 cannabinoid receptor interaction.

Thus, the aim of this work was to assess the antinociceptive effect of peltatoside and analyze the cannabinoid system involvement in this action.

Our results suggest that this natural substance is capable of inducing analgesia through the activation of peripheral CB1 receptors, involving endocannabinoids in this process.”

http://www.ncbi.nlm.nih.gov/pubmed/27574895

Image result for Annona crassiflora Mart

The gastrointestinal tract – a central organ of cannabinoid signaling in health and disease.

Image result for Neurogastroenterol Motil

“In ancient medicine, extracts of the marijuana plant Cannabis sativa were used against diseases of the gastrointestinal (GI) tract.

Today, our knowledge of the ingredients of the Cannabis plant has remarkably advanced enabling us to use a variety of herbal and synthetic cannabinoid (CB) compounds to study the endocannabinoid system (ECS), a physiologic entity that controls tissue homeostasis with the help of endogenously produced CBs and their receptors.

After many anecdotal reports suggested beneficial effects of Cannabis in GI disorders, it was not surprising to discover that the GI tract accommodates and expresses all the components of the ECS.

Cannabinoid receptors and their endogenous ligands, the endocannabinoids, participate in the regulation of GI motility, secretion, and the maintenance of the epithelial barrier integrity.

In addition, other receptors, such as the transient receptor potential cation channel subfamily V member 1 (TRPV1), the peroxisome proliferator-activated receptor alpha (PPARα) and the G-protein coupled receptor 55 (GPR55), are important participants in the actions of CBs in the gut and critically determine the course of bowel inflammation and colon cancer.

PURPOSE:

The following review summarizes important and recent findings on the role of CB receptors and their ligands in the GI tract with emphasis on GI disorders, such as irritable bowel syndrome, inflammatory bowel disease, and colon cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/27561826