A comparison of cannabidiolic acid with other treatments for anticipatory nausea using a rat model of contextually elicited conditioned gaping

“The effectiveness of cannabidiolic acid (CBDA) was compared with other potential treatments for anticipatory nausea (AN), using a rat model of contextually elicited conditioned gaping reactions…

Conclusions

CBDA has therapeutic potential as a highly potent and selective treatment for AN without psychoactive or locomotor effects.”

http://link.springer.com/article/10.1007/s00213-014-3498-1

Target-Selective Phototherapy Using a Ligand-Based Photosensitizer for Type 2 Cannabinoid Receptor.

“Phototherapy is a powerful, noninvasive approach for cancer treatment, with several agents currently in clinical use.

…we developed a phototherapy agent that combines a functional ligand and a near infrared phthalocyanine dye. Our target is type 2 cannabinoid receptor (CB2R), considered an attractive therapeutic target for phototherapy given it is overexpressed by many types of cancers that are located at a surface or can be reached by an endoscope.

Overall, this opens up the opportunity for development of an alternative treatment option for CB2R-positive cancers.”

http://www.ncbi.nlm.nih.gov/pubmed/24583052

Endocannabinoid system in cancer cachexia.

Image result for current opinion in clinical nutrition & metabolic care

“More than 60% of advanced cancer patients suffer from anorexia and cachexia.

This review focuses on the possible mechanisms by which the endocannabinoid system antagonizes cachexia-anorexia processes in cancer patients and how it can be tapped for therapeutic applications.

Cannabinoids stimulate appetite and food intake…

Cannabinoid type 1 receptor activation stimulates appetite and promotes lipogenesis and energy storage.

Further study of cancer-cachexia pathophysiology and the role of endocannabinoids will help us to develop cannabinoids without psychotropic properties, which will help cancer patients suffering from cachexia and improve outcomes of clinical antitumor therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/17563462

The endocannabinoid signaling system in cancer.

Image result for trends in pharmacological sciences

“The endocannabinoid system, comprising lipid-derived endocannabinoids, their G-protein-coupled receptors (GPCRs), and the enzymes for their metabolism, is emerging as a promising therapeutic target in cancer.

This report highlights the main signaling pathways for the antitumor effects of the endocannabinoid system in cancer and its basic role in cancerpathogenesis, and discusses the alternative view of cannabinoid receptors as tumor promoters.

We focus on new players in the antitumor action of the endocannabinoid system and on emerging crosstalk among cannabinoid receptors and other membrane or nuclear receptors involved in cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/23602129

Chronic cannabidiol treatment improves social and object recognition in double transgenic APPswe/PS1∆E9 mice.

“Patients suffering from Alzheimer’s disease (AD) exhibit a decline in cognitive abilities including an inability to recognise familiar faces…

The non-psychoactive phytocannabinoid cannabidiol (CBD) exerts neuroprotective, anti-oxidant and anti-inflammatory effects and promotes neurogenesis. CBD also reverses Aβ-induced spatial memory deficits in rodents.

This is the first study to investigate the effect of chronic CBD treatment on cognition in an AD transgenic mouse model.

Our findings suggest that CBD may have therapeutic potential for specific cognitive impairments associated with AD.”

http://www.ncbi.nlm.nih.gov/pubmed/24577515

Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation.

“Plant cannabinoids, like Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD), activate/desensitize thermosensitive transient receptor potential (TRP) channels of vanilloid type-1 or -2 (TRPV1 or TRPV2). We investigated whether cannabinoids also activate/desensitize two other ‘thermo-TRP’s’, the TRP channels of vanilloid type-3 or -4 (TRPV3 or TRPV4), and if the TRPV-inactive cannabichromene (CBC) modifies the expression of TRPV1-4 channels in the gastrointestinal tract…

CONCLUSIONS:

Cannabinoids can affect both the activity and the expression of TRPV1-4 channels, with various potential therapeutic applications, including in the gastrointestinal tract.”

http://www.ncbi.nlm.nih.gov/pubmed/21726418

Non-psychoactive cannabinoids modulate the descending pathway of antinociception in anaesthetized rats through several mechanisms of action.

“Two non-psychoactive cannabinoids, cannabidiol (CBD) and cannabichromene (CBC), are known to modulate in vitro the activity of proteins involved in nociceptive mechanisms, including transient receptor potential (TRP) channels of vanilloid type-1 (TRPV1) and of ankyrin type-1 (TRPA1), the equilibrative nucleoside transporter and proteins facilitating endocannabinoid inactivation. Here we have tested these two cannabinoids on the activity of the descending pathway of antinociception…

CONCLUSIONS AND IMPLICATIONS:

CBD and CBC stimulated descending pathways of antinociception and caused analgesia by interacting with several target proteins involved in nociceptive control.

These compounds might represent useful therapeutic agents with multiple mechanisms of action.”

http://www.ncbi.nlm.nih.gov/pubmed/20942863

Peripheral, but not central effects of cannabidiol derivatives: mediation by CB(1) and unidentified receptors.

“Delta-9 tetrahydrocannabinol (Delta(9)-THC) and (-)-cannabidiol ((-)-CBD) are major constituents of the Cannabis sativa plant with different pharmacological profiles…

We tested a series of (+)- and (-)-CBD derivatives for central and peripheral effects in mice…

We suggest that (+)-CBD analogues have mixed agonist/antagonist activity in the brain.

Second, (-)-CBD analogues which are devoid of cannabinoid receptor affinity but which inhibit intestinal motility, suggest the existence of a non-CB(1), non-CB(2) receptor.

Therefore, such analogues should be further developed as antidiarrheal and/or antiinflammatory drugs.

We propose to study the therapeutic potential of (-)- and (+)-CBD derivatives for complex conditions such as inflammatory bowel disease and cystic fibrosis.”

http://www.ncbi.nlm.nih.gov/pubmed/15910887

Antipsychotic profile of cannabidiol and rimonabant in an animal model of emotional context processing in schizophrenia.

“Clinical and neurobiological findings suggest that cannabinoids and their receptors are implicated in schizophrenia. Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa plant, has been reported to have central therapeutic actions, such as antipsychotic and anxiolytic effects…

Our results suggest a potential therapeutical effect of CBD and rimonabant to treat the emotional processing impairment presented in schizophrenia.

In addition, our results reinforce the anxiolytic profile of CBD.”

http://www.ncbi.nlm.nih.gov/pubmed/22716146

Effects of cannabinoid drugs on the deficit of prepulse inhibition of startle in an animal model of schizophrenia: the SHR strain.

“Clinical and neurobiological findings suggest that the cannabinoids and the endocannabinoid system may be implicated in the pathophysiology and treatment of schizophrenia…

Our results reinforce the role of the endocannabinoid system in the sensorimotor gating impairment related to schizophrenia, and point to cannabinoid drugs as potential therapeutic strategies.”

http://www.ncbi.nlm.nih.gov/pubmed/24567721