Altered Expression of the CB1 Cannabinoid Receptor in the Triple Transgenic Mouse Model of Alzheimer’s Disease.

“The endocannabinoid system has gained much attention as a new potential pharmacotherapeutic target in various neurodegenerative diseases, including Alzheimer’s disease (AD).

…The altered CB1 levels appear, rather, to be age-and/or pathology-dependent, indicating an involvement of the endocannabinoid system in AD pathology and supporting the ECS as a potential novel therapeutic target for treatment of AD.”

http://www.ncbi.nlm.nih.gov/pubmed/24496074

Neuroprotective effects of the cannabinoid agonist HU210 on retinal degeneration.

“Cannabinoids have been demonstrated to exert neuroprotective effects on different types of neuronal insults.

Here we have addressed the therapeutic potential of the synthetic cannabinoid HU210 on photoreceptor degeneration, synaptic connectivity and functional activity of the retina in the transgenic P23H rat, an animal model for autosomal dominant retinitis pigmentosa (RP)…

These data suggest that cannabinoids are potentially useful to delay retinal degeneration in RP patients.”

http://www.ncbi.nlm.nih.gov/pubmed/24495949

Involvement of the endocannabinoid system in osteoarthritis pain.

“Increasing evidence from preclinical studies supports the interest of the endocannabinoid system as an emerging therapeutic target for osteoarthritis pain.

Indeed, pharmacological studies have shown the anti-nociceptive effects of cannabinoids in different rodent models of osteoarthritis, and compelling evidence suggests an active participation of the endocannabinoid system in the pathophysiology of this disease.

The ubiquitous distribution of cannabinoid receptors, together with the physiological role of the endocannabinoid system in the regulation of pain, inflammation and even joint function further support the therapeutic interest of cannabinoids for osteoarthritis.

…review summarizes the promising results that have been recently obtained in support of the therapeutic value of cannabinoids for osteoarthritis management.”

http://www.ncbi.nlm.nih.gov/pubmed/24494687

Neurotrophins, endocannabinoids and thermo-transient receptor potential: a threesome in pain signalling.

“Although pain is multifactorial at cellular and molecular levels, it is widely accepted that neurotrophin (TrkA, p75NTR, Ret and GFRs), cannabinoid (CB1 and CB2), and thermo-transient receptor potential (TRPs; TRPV1, TRPA1 and TRPM8) receptors play a pivotal role.

…the available information confirms that pharmacological modulation of this signalling triad is a highly valuable therapeutic strategy for effectively treating pain syndromes.”

http://www.ncbi.nlm.nih.gov/pubmed/24494676

Effect of cannabinoid receptor activation on spreading depression.

“Cannabis has been used for centuries for both symptomatic and prophylactic treatment of different types of headaches including migraine…

Suppression of CSD (cortical spreading depression) by activation of CB1 receptors suggests the potential therapeutic effects of cannabinoids in migraine with aura as well as other CSD-related disorders.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586901/

Regulatory role of the Cannabinoid-2 receptor in stress-induced neuroinflammation in mice.

“Stress-exposure produces excitoxicity and neuroinflammation, contributing to the cellular damage observed in stress-related neuropathologies. The endocannabinoid system is present in stress-responsive neural circuits and it is emerging as a homeostatic system. The aim of this study was to elucidate the possible regulatory role of cannabinoid-2 receptor in stress-induced excitotoxicity and neuroinflammation.

CONCLUSIONS AND IMPLICATIONS:

These results suggest that pharmacological manipulation of CB2 receptor is a potential therapeutic strategy for the treatment of stress-related pathologies with a neuroinflammatory component, such as depression.”

http://www.ncbi.nlm.nih.gov/pubmed/24467609

Physiological intestinal oxygen modulates the Caco-2 cell model and increases sensitivity to the phytocannabinoid cannabidiol.

“The Caco-2 cell model is widely used as a model of colon cancer… these cells were more sensitive to cannabidiol-induced antiproliferative actions through changes in cellular energetics…

These effects could impact on its development as an anticancer therapeutic…”

http://www.ncbi.nlm.nih.gov/pubmed/24464350

Targeting astrocytomas and invading immune cells with cannabinoids: a promising therapeutic avenue.

“The last quarter century has borne witness to great advances in both the detection and treatment of numerous cancers. Even so, malignancies of the central nervous system, especially high-grade astrocytomas, continue to thwart our best efforts toward effective chemotherapeutic strategies.

With prognosis remaining bleak, the time for serious consideration of alternative therapies has arrived. Various preparations of the marijuana plant, Cannabis sativa, and related synthetic and endogenous compounds, may constitute just such an alternative.

Cannabinoids, although much maligned historically for their psychotropic effects and clear abuse potential, have long been used medicinally and are now staging an impressive comeback, as recent studies have begun to explore their powerful anti-tumoral properties.

In this study, we review in vitro and in vivo evidence supporting the use of cannabinoids for treatment of brain tumors. We further propose the continued intense investigation of cannabinoid efficacies as novel anti-cancer agents, especially in models recapitulating such properties within the unique environment of the brain.”

http://www.ncbi.nlm.nih.gov/pubmed/17952648

The Expression Level of CB1 and CB2 Receptors Determines Their Efficacy at Inducing Apoptosis in Astrocytomas

“Cannabinoids represent unique compounds for treating tumors, including astrocytomas.

One of the most promising therapeutic uses of cannabinoids is linked to their ability to induce apoptosis in tumors, including in astrocytoma…

Remarkably, cannabinoids applied at high concentration induce apoptosis in all subclones independently of CB1, CB2…

…the treatment of tumors with high concentrations of cannabinoids should not be overlooked. In fact, stereotaxic injection of high concentrations of cannabinoids will eradicate a significant portion of C6 astrocytomas…”

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806825/

 

Cannabinoid and cannabinoid-like receptors in microglia, astrocytes and astrocytomas

“…compounds targeting cannabinoid-like receptors constitute promising therapeutics to manage neuroinflammation and eradicate malignant astrocytomas.

Importantly, the selective targeting of cannabinoid-like receptors should provide therapeutic relieve without inducing the typical psychotropic effects and possible addictive properties…

 Taken together, the studies outlined in this review suggest that stereotactic injection of high concentrations of CBD could constitute a useful regimen for neurosurgeons to use in the treatment of malignant astrocytomas and of excessive/chronic neuroinflammation.

Such a treatment could provide therapeutic effects both directly, by killing the astrocytoma and limiting its propagation, and indirectly, by reducing the accumulation of activated microglia or invading peripheral immune cells.

The fact that non-psychotropic cannabinoids acting through CB-like receptors affect such fundamental processes involved in microglial cell activation and astrocytoma propagation constitutes, in my opinion, one of the most exciting areas of research in our search for new chemotherapeutic agents to treat malignant brain tumors and new anti-inflammatory agents to temper the damage linked to chronic neuroinflammation.

Furthermore, the curative properties of cannabinoids do not overlap with currently available medicines, and therefore cannabinoid-based treatments constitute a new therapeutic platform.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2919281/